Видеоурок «Теоремы об углах, образованных двумя параллельными прямым. Окружность


Теорема: Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны. а в А В = 2 c


Доказательство: A B CD M N 1 2 A B CD M N 1 2 K O Пусть прямые АВ и СD параллельны, МN их секущая. Докажем, что накрест лежащие углы 1 и 2 равны между собой. Допустим, что 1 и 2 не равны. Проведем через точку О прямую КF. Тогда при точке О можно построить KON, накрест лежащий и равный 2. Но если KON = 2, то прямая КF будет параллельна СD. Получили, что через точку О проведены две прямые АВ и КF, параллельные прямой СD. Но этого не может быть. Мы пришли к противоречию, потому что допустили, что 1 и 2 не равны. Следовательно, наше допущение является неправильным и 1 должен быть равен 2, т. е. накрест лежащие углы равны. F


Теорема: Если две параллельные прямые пересечены секущей, то соответственные углы равны. а в А В = 2




Теорема: Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°. а в А В = 180°


Доказательство: Пусть параллельные прямые а и b пересечены секущей АВ, то соответственные 1 и 2 будут равны, 2 и 3 – смежные, поэтому = 180°. Из равенств 1 = 2 и = 180° следует, что = 180°. Теорема доказана. 2 а в А В 3 1


Решение: 1. Пусть Х – это 2, тогда 1 = (Х+70°), т.к. сумма углов 1 и 2 = 180°, в силу того, что они смежные. Составим уравнение: Х+ (Х+70°) = 180° 2Х = 110 ° Х = 55° (Угол 2) 2. Найдем 1. 55° + 70° = 125° 3. 1 = 3, т.к. они вертикальные. 3 = 5, т.к. они накрест лежащие. 125° 5 = 7, т.к. они вертикальные. 2 = 4, т.к. они вертикальные. 4 = 6, т.к. они накрест лежащие. 55° 6 = 8, т.к. они вертикальные. Задача 1: A B Условие: найдите все углы, образованные при пересечении двух параллельных A и B секущей C, если один из углов на 70° больше другого.


Решение: 1. 1= 2, т.к. они вертикальные, значит 2= 45° смежен с 2, поэтому 3+ 2=180°, и из этого следует, что 3= 180° - 45°= 135° =180°, т.к. они односторонние. 4 = 45°. Ответ: 4=45°; 3=135°. Задача 3: A B 2 Условие: две параллельные прямые А и B пересечены секущей С. Найти, чему будут равны 4 и 3, если 1=45°

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Треугольник \(AOB\) – равнобедренный, \(AO = OB\) , \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\) , откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\) .

Теперь рассмотрим произвольный вписанный угол \(ABC\) . Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).


Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :


Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\) .

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\) , образованного двумя касательными, проведенными из одной точки \(K\) .

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) .

\(\angle DAB\) – внешний угол треугольника \(MAD\) , тогда \(\angle DAB = \angle DMB + \angle MDA\) , откуда \(\angle DMB = \angle DAB - \angle MDA\) , но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB - \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} - \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


Из треугольника \(AMD\) : \(\angle AMD = 180^\circ - \angle BDA - \angle CAD = 180^\circ - \frac12\buildrel\smile\over{AB} - \frac12\buildrel\smile\over{CD}\) .

Но \(\angle AMD = 180^\circ - \angle CMD\) , откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\) , \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\) , пересекает \(a\) в точке \(M\) . Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\) .


Обозначим \(\angle OAB = \alpha\) . Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\) . Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ - 2\alpha = 2(90^\circ - \alpha)\) .

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\) , то есть \(\angle OAM = 90^\circ\) , следовательно, \(\angle BAM = 90^\circ - \angle OAB = 90^\circ - \alpha = \frac12\cdot\buildrel\smile\over{AB}\) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть \(AB=CD\) . Докажем, что меньшие полуокружности дуги .


По трем сторонам, следовательно, \(\angle AOB=\angle COD\) . Но т.к. \(\angle AOB, \angle COD\) - центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) .

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) , то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\) . Следовательно, и \(AB=CD\) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


Доказательство

1) Пусть \(AN=NB\) . Докажем, что \(OQ\perp AB\) .

Рассмотрим \(\triangle AOB\) : он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\) .

2) Пусть \(OQ\perp AB\) . Докажем, что \(AN=NB\) .

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\) .

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\) .

Рассмотрим треугольники \(ADE\) и \(CBE\) . В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\) , а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\) , откуда \(AE\cdot BE = CE\cdot DE\) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\) . Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\) . Покажем, что \(MB\cdot MC = MA^2\) .


Рассмотрим треугольники \(MBA\) и \(MCA\) : \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\) . По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\) . Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\) , что равносильно \(MB\cdot MC = MA^2\) .

Следствие

Произведение секущей, проведённой из точки \(O\) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\) .

Теорема: Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны. а в А В 1 2 1 = 2 c

Доказательство: A B C DM N 1 2 K O Пусть прямые АВ и СD параллельны, МN - их секущая. Докажем, что накрест лежащие углы 1 и 2 равны между собой. Допустим, что 1 и 2 не равны. Проведем через точку О прямую К F. Тогда при точке О можно построить KON , накрест лежащий и равный 2. Но если KON = 2, то прямая К F будет параллельна СD. Получили, что через точку О проведены две прямые АВ и К F, параллельные прямой СD. Но этого не может быть. Мы пришли к противоречию, потому что допустили, что 1 и 2 не равны. Следовательно, наше допущение является неправильным и 1 должен быть равен 2, т. е. накрест лежащие углы равны.

Теорема: Если две параллельные прямые пересечены секущей, то соответственные углы равн ы. а в А В 1 2 1 =

Доказательство: 2 а в А В 3 1 Пусть параллельные прямые а и b пересечены секущей АВ, то накрест лежащие 1 и 3 будут равны. 2 и 3 равны как вертикальные. Из равенств 1 = 3 и 2 = 3 следует, что 1 = 2. Теорема доказана

Теорема: Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°. а в А В 3 1 1 + 3 = 180°

Доказательство: Пусть параллельные прямые а и b пересечены секущей АВ, то соответственные 1 и 2 будут равны, 2 и 3 – смежные, поэтому 2 + 3 = 180 °. Из равенств 1 = 2 и 2 + 3 = 180 ° следует, что 1 + 3 = 180 °. Теорема доказана. 2 а в А В

Решение: 1. Пусть Х – это 2, тогда 1 = (Х+70°), т. к. сумма углов 1 и 2 = 180°, в силу того, что они смежные. Составим уравнение: Х+ (Х+70°) = 180° 2 Х = 110 ° Х = 55° (Угол 2) 2. Найдем 1. 55° + 70° = 125° 3. 1 = 3, т. к. они вертикальные. 3 = 5, т. к. они накрест лежащие. 125° 5 = 7, т. к. они вертикальные. 2 = 4, т. к. они вертикальные. 4 = 6, т. к. они накрест лежащие. 55° 6 = 8, т. к. они вертикальные. Задача № 1: A B 4 3 5 8 7 21 6 Условие: найдите все углы, образованные при пересечении двух параллельных A и B секущей C, если один из углов на 70° больше другого.

Решение: 1. Т. к. 4 = 45°, то 2 = 45°, потому что 2 = 4(как соответственные) 2. 3 смежен с 4, поэтому 3+ 4=180°, и из этого следует, что 3= 180° — 45°= 135°. 3. 1 = 3, т. к. они накрест лежащие. 1 = 135°. Ответ: 1=135°; 2=45°; 3=135°. Задача № 2: A B 1 Условие: на рисунке прямые А II B и C II D, 4=45°. Найти углы 1, 2, 3.

Решение: 1. 1= 2, т. к. они вертикальные, значит 2= 45°. 2. 3 смежен с 2, поэтому 3+ 2=180°, и из этого следует, что 3= 180° — 45°= 135°. 3. 4 + 3=180°, т. к. они односторонние. 4 = 45°. Ответ: 4=45°; 3=135°. Задача № 3: A B 2 Условие: две параллельные прямые А и B пересечены секущей С. Найти, чему будут равны 4 и 3, если 1=45°.

§ 1 Обратная теорема

В этом уроке выясним, какие теоремы называются обратными, приведем примеры обратных теорем, сформулируем теоремы об углах, образованных двумя параллельными прямыми и секущей, и познакомимся с методом доказательства от противного.

При изучении различных геометрических фигур обычно формулируются определения, доказываются теоремы, рассматриваются следствия из теорем. Во всякой теореме различают две части: условие и заключение.

Условие теоремы - это то, что дано, а заключение - это то, что требуется доказать. Очень часто условие теоремы начинается со слова «если», а заключение начинается со слова «то». Например, теорему о свойствах равнобедренного треугольника можно сформулировать так: «Если треугольник равнобедренный, то углы при его основании равны». Первая часть теоремы «Если треугольник равнобедренный» - это условие теоремы, вторая часть теоремы «то углы при его основании равны» - это заключение теоремы.

Теорема, где меняются местами условие с заключением, называется обратной теоремой. Обратная теорема к теореме о свойствах равнобедренного треугольника будет звучать так: «Если в треугольнике два угла равны, то такой треугольник равнобедренный».

Запишем коротко каждую из них:

Мы видим, что условие и заключение поменялись местами.

Каждое из этих утверждений справедливо.

Возникает вопрос: всегда ли является верным утверждение, где условие меняется с заключением местами?

Рассмотрим пример.

Если углы вертикальные, то они равны. Это верное утверждение, у него есть доказательство. Сформулируем обратное утверждение: если углы равны, то они вертикальные. Данное утверждение неверное, в этом легко убедиться, приведя опровергающий пример: возьмем два прямых угла (см. рисунок), они равны, но при этом не являются вертикальными.

Таким образом, обратные утверждения (теоремы) по отношению к уже доказанным утверждениям (теоремам) всегда требуют доказательства.

§ 2 Теоремы об углах, образованных двумя параллельными прямыми и секущей

Давайте теперь вспомним доказанные утверждения - теоремы, выражающие признаки параллельности двух прямых, сформулируем обратные им теоремы и убедимся в их справедливости, приведя доказательства.

Первый признак параллельности прямых.

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Обратная теорема:

Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

Докажем это утверждение.

Дано: параллельные прямые а и b пересечены секущей АВ.

Доказать: накрест лежащие углы 1 и 2 равны. (см. рис.)

Доказательство:

Допустим, что углы 1 и 2 не равны.

Отложим от луча АВ угол САВ, равный углу 2, так, чтобы угол САВ и угол 2 были накрест лежащими углами при пересечении прямых СА и b секущей АВ.

По построению эти накрест лежащие углы равны, значит, прямая СА параллельна прямой b.

Мы получили, что через точку А проходят две прямые а и СА, параллельные прямой b. Это противоречит аксиоме параллельных прямых: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Значит, наше допущение неверно, углы 1 и 2 равны.

Теорема доказана.

§ 3 Метод доказательства от противного

При доказательстве этой теоремы мы использовали способ рассуждений, который называется методом доказательства от противного. Начиная доказательство, мы предположили противоположное тому, что требовалось доказать. Считая это предположение верным, путем рассуждений пришли к противоречию с аксиомой параллельных прямых. Из этого сделали вывод, что наше предположение не верно, а верно утверждение теоремы. Такой способ доказательства часто используется в математике.

Рассмотрим следствие доказанной теоремы.

Следствие:

Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.

Пусть прямая а параллельна прямой b, прямая с перпендикулярна прямой а, т.е. угол 1 = 90º.

Прямая с пересекает прямую а, значит, прямая с пересекает также прямую b.

При пересечении параллельных прямых секущей, накрест лежащие углы равны, значит, угол 1 = углу 2.

Так как угол 1 = 90º, то и угол 2 = 90º, значит, прямая с перпендикулярна прямой b.

Следствие доказано.

Обратная теорема для второго признака параллельности прямых:

Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Обратная теорема для третьего признака параллельности прямых:

Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180º.

Итак, в этом уроке мы выяснили, какие теоремы называются обратными, сформулировали и рассмотрели теоремы об углах, образованных двумя параллельными прямыми и секущей, а также познакомились с методом доказательства от противного.

Список использованной литературы:

  1. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2013. – 383 с.: ил.
  2. Гаврилова Н.Ф. Поурочные разработки по геометрии 7 класс. - М.: «ВАКО», 2004, 288с. – (В помощь школьному учителю).
  3. Белицкая О.В. Геометрия. 7 класс. Ч.1. Тесты. – Саратов: Лицей, 2014. – 64 с.