Нефть. Нефть: определение и описание

Нефть - это горючая жидкость

Добыча и переработка запасов нефти является основой экономики многих стран

  • Нефть - это, определение
  • Места залежей нефти
  • Химическая природа нефти
  • Общий состав нефти
  • Содержание серы в нефти
  • Содержание алканов в нефти
  • Содержание аренов в нефти
  • Содержание нафтенов в нефти
  • Физические свойства нефти
  • Применение нефти
  • Очистка нефти
  • Исторические сведения о нефти
  • Миграция (перемещение) нефти
  • Месторождения нефти
  • Происхождение нефти
  • Нефтяные запасы
  • Цены на нефть и их экономическое и политическое значение
  • История нефтедобыавющей отрасли в России
  • Нефтяные пески
  • Цены на нефть
  • Источники статьи "Нефть"

Нефть - это, определение

Нефть — это природная маслянистая горючая жидкость со специфическим запахом, состоящая в основном из сложной смеси углеводородов различной молекулярной массы и некоторых других химических соединений.

Нефть - это один из инструментов рынка сырья, на цену которого основывается большая часть продаваемых энергоносителей в мире, таких как газ, электричества и другие виды энергии. В состав черного золота входит смесь углеводородов самого разнообразного строения. Их молекулы представляют собой и короткие цепи атомов углерода, и длинные, и нормальные, и разветвленные, и замкнутые в кольца, и многокольчатые. Путем перегонки из нее получают различные продукты черного золота: , реактивное топливо, осветительный , дизтопливо, .

Нефть

Нефть (Oil) - это

Места залежей нефти

Нефть обнаруживается вместе с газообразными углеводородами на глубинах от десятков метров до 5—6 км. Однако на глубинах свыше 4,5—5 км преобладают газовые и газоконденсатные залежи с незначительным количеством лёгких фракций. Максимальное число залежей черного золота располагается на глубине 1—3 км. На малых глубинах и при естественных выходах на земную поверхность нефть преобразуется в густую мальту, полутвёрдый асфальт и др. образования — например, битуминозные пески и битумы. Нефтяные месторождении классифицируется на:мелкие - до 10 млн. тонн черного золота;средние - 10 - 100 млн. тонн черного золота (Кумколь, Верх-Тарское);крупное - 100 - 1000 млн. тонн черного золота (Каламкас, Пенглай, Правдинское, Статфьорд);крупнейшие (гигантские) - 1 - 5 млрд. тонн черного золота (Тенгиз, Самотлор, Ромашкино);Уникальные (супергигантские) - 5 млрд. тонн черного золота и более (Аль-Гавар, Большой Бурган, Эр-Румайла). Заключающие нефть породы обладают сравнительно высокой пористостью и достаточной для её извлечения проницаемостью. Породы, допускающие свободное перемещение и накопление в них жидкостей и газов, называются коллекторами. Пористость коллекторов зависит от степени отсортированности зёрен, их формы и укладки, а также и от наличия цемента. Проницаемость определяется размером пор и их сообщаемостью. Главнейшими коллекторами черного золота являются пески, песчаники, конгломераты, доломиты, известняки и другие хорошо проницаемые горные породы, заключённые среди таких слабопроницаемых пород, как глины или гипсы. При благоприятных условиях коллекторы могут быть трещиноватые метаморфические и изверженные породы, находящиеся в соседстве с осадочными нефтеносными породами. Часто нефтяная залежь занимает лишь часть коллектора и поэтому в зависимости от характера пористости и степени цементации породы (гетерогенности залежи) обнаруживается различная степень насыщенности черным золотом отдельных её участков в пределах самой залежи. Иногда этой причиной обусловливается наличие непродуктивных участков залежи. Обычно нефть в залежи сопровождается водой, которая ограничивает залежь вниз по падению слоёв либо по всей её подошве. Кроме того, в каждой залежи черного золота вместе с ней находится т. н. плёночная, или остаточная вода, обволакивающая частицы пород (песков) и стенки пор. В случае выклинивания пород коллектора или обрезания его сбросами, надвигами и т п. дизъюнктивными нарушениями залежь может либо целиком, либо частично ограничиваться слабопроницаемыми породами. В верхних частях нефтяной залежи иногда сосредоточивается газ (т. н. «газовая шапка»). Дебит скважин, помимо физических свойств коллектора, его мощности и насыщения, определяется давлением растворённого в черного золота газа и краевых вод. При добыче нефти скважинами не удаётся целиком извлечь всю нефть из залежи, значительное количество её остаётся в недрах земной коры (см. Нефтеотдача и Нефтедобыча). Для более полного извлечения черного золота применяются специальные приёмы, из которых большое значение имеет метод заводнения (законтурного, внутриконтурного, очагового). Нефть в залежи находится под давлением (упругого расширения и/или краевой воды и/или газа, как расстворенного так и газовой шапки) вследствие чего вскрытие залежи, особенно первыми скважинами, сопровождается риском газонефтепроявлений (очень редко фонтанными выбросами черного золота). Весьма продолжительное время (со 2-й половины XIX в.) геологи полагали, что нефтяные залежи приурочиваются почти исключительно к антиклинальным складкам, и только в 1911 И. М. Губкиным был открыт в Майкопском районе новый тип залежи, приуроченной к аллювиальным пескам и получившей название «рукавообразной». Спустя более 10 лет подобные залежи были обнаружены в США. Дальнейшее развитие разведочных работ в СССР и в США завершилось открытием залежей, связанных с соляными куполами, приподнимающими, а иногда и протыкающими осадочные толщи. Изучение нефтяных месторождений показало, что образование нефтяных залежей обусловлено различными структурными формами изгибов пластов, стратиграфическими соотношениями свит и литологическими особенностями пород. Предложено несколько классификаций месторождений и залежей черного золота как в Российской Федерации, так и за рубежом. Нефтяные месторождения различаются друг от друга по типу структурных форм и условиям их образования. Залежи черного золота и газа различаются друг от друга по формам ловушек-коллекторов и по условиям образования в них скоплений черного золота. Нефть находится в недрах в виде скоплений различного объёма от нескольких мм3 до нескольких десятков млрд. м3. Практический интерес имеют залежи черного золота, представляющие её скопления с массой от 100 тыс. т и больше, находящиеся в проницаемых породах-коллекторах.

Нефть (Oil) - это

Химическая природа нефти

По химической природе и происхождению нефть близка к естественным горючим газам, озокериту, а также асфальту. Иногда все эти горючие ископаемые объединяют под общим названием петролитов и относят к ещё более обширной группе так называемых каустобиолитов — горючих минералов биогенного происхождения, которые включают также ископаемые твёрдые топлива — торф, бурые и каменные угли, антрацит, сланцы. По способности растворяться в органических жидкостях (сероуглероде, хлороформе, спиртобензольной смеси) нефть, как и другие петролиты, а также вещества, извлекаемые этими растворителями из торфа, ископаемых углей или продуктов их переработки, принято относить к группе битумов .

Нефть — легко воспламеняющаяся жидкость; температура вспышки от −35 до +121 °C (зависит от фракционного состава и содержания в ней растворённых газов). Нефть растворима в органических растворителях, в обычных условиях не растворима в воде, но может образовывать с ней стойкие эмульсии. В технологии для отделения от черного золота воды и растворённой в ней соли проводят обезвоживание и обессоливание.

Общий состав нефти

Состав черного золота представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть — жидкие углеводороды (> 500 веществ или обычно 80—90 % по массе) и гетероатомные органические соединения (4—5 %), преимущественно сернистые (около 250 веществ), азотистые (> 30 веществ) и кислородные (около 85 веществ), а также металлоорганические соединения (в основном ванадиевые и никелевые); остальные компоненты — растворённые углеводородные газы (C1-C4, от десятых долей до 4 %), вода (от следов до 10 %), минеральные соли (главным образом хлориды, 0,1—4000 мг/л и более), растворы солей органических кислот и др., механические примеси (частицы глины, песка, известняка).Кислорода в черного золота содержится от 0,05 до 3,6%, а содекислот азота не превышает 1,7%. Распределение гетероатомов по фракциям черного золота неравномерно. Обычно большая их часть сосредоточена в тяжелых фракциях и особенно в смолистой ее части.Кислородсодержащие соединения в отечественных нефтях редко составляют больше 10%. Эти компоненты черного золота представлены кислотами, эфирами, фенолами и др. Содержание кислорода в нефтяных фракциях возрастает с повышением их температуры кипения, причем до 90-95% кислорода приходится на смолы и асфальтены.Наиболее распространенными кислородсодержащими соединениями черного золота являются кислоты и фенолы, которые обладают кислыми свойствами и могут быть выделены из черного золота или ее фракций щелочью. Их суммарное кислоты тво обычно оценивают кислотным числом (количество мг КОН, пошедшего на титрование 1 г нефтепродукта). Содержание веществ с кислыми свойствами также, как и всех кислородсодержащих соединений, убывает с возрастом и глубиной нефтяных залежей.Процентное содержание кислорода чаще всего определяют по разности между ста и суммарным содержанием всех остальных элементов в процентах. Это неточный метод, так как на его результатах сказываются погрешности определения всех остальных элементов.Имеются прямые методы определения кислорода, например, гравиметрический метод пиролиза нефтепродуктов в токе инертного газа в присутствии платинированного графита и оксида купрума. О содержании кислорода судят по массе выделившегося СО2.

Может составлять от 0,2 до 7,0%, что отвечает содержанию сернистых соединений ~ 0,2-7,0%.. является наиболее распространенным гетероэлементом в нефтях и нефтепродуктах. Содержание ее в черного золота колеблется от сотых долей процента до 14% (нефтепроявление Роузл Пойнт, США ). В последнем случае почти все соединения черного золота являются серосодержащими.Как и кислородсодержащие соединения черного золота, серосодержащие неравномерно распределены по ее фракциям. Обычно их содержание увеличивается с повышением температуры кипения. Однако в отличие от других гетероэлементов, содержащихся в основном в асфальто-смолистой части черного золота, сера присутствует в значительных количествах в дистиллятных фракциях.В нефтях сера встречается в виде растворенной элементарной серы, сероводорода, меркаптанов, сульфидов, дисульфидов и производных тиофена, а также в виде сложных соединений, содержащих одновременно атомы серы, кислорода и азота в различных сочетаниях.Серосодержащие соединения наиболее вредны как при переработке, так и при использовании нефтепродуктов. Они отрицательно влияют на многие эксплуатационные свойства нефтепродуктов. У автомобильных бензинов снижается приемистость к ТЭС, стабильность, способность к нагарообразованию, коррозионную агрессивность. При сгорании сернистых соединений выделяются SO2 и SО3, образующие с водой коррозионно-агрессивные сернистую и серную кислоты. Серный ангидрид (SО3) сильнее, чем SО2 влияет на нагарообразование, износ и коррозию в двигателе, а также на качество масла, При наличии SО3 в продуктах сгорания повышается точка росы и тем самым облегчается коррозиюция Н2SO4 на стенках гильз цилиндров и усиливается коррозия. При воздействии на масло Н2SО4 образуются смолистые продукты, образующие затем нагар, обладающий в результате повышенного содержания серы большой плотностью и абразивностью и способствующий износу двигателя.Сернистые соединения могут вызвать временное обратимое отравление. Вместе с тем, при длительном воздействии сернистых соединений, отравление зачастую бывает необратимым. Отравление сернистыми соединениями избирательно ведет к падению активности катализатора лишь в отношении реакций ароматизации углеводородов. При этом возрастает расщепляющее действие катализатора . Снижение скорости реакции ароматизации, с одной стороны, и усиление реакций распада, с другой, вызывает нарушение селективности процесса, ослабление гидрирующей функции катализатора ведет за собой также более быстрое закоксовывание катализатора. Наиболее чувствительны к действию сернистых соединений полиметаллические ренийсодержащие катализаторы.

Содержание азота в черного золота редко превышает 1%. Оно снижается с глубиной залегания черного золота. Азотистые соединения сосредоточены в высококипящих фракциях черного золота, и особенно в тяжелых остатках. Обычно азотсодержащие соединения делят на две большие группы: азотистые основания и нейтральные азотистые соединения.Азотистые основания сравнительно легко выделяются минеральными кислотами и поэтому наиболее изучены.Нейтральные азотистые соединения черного золота представлены арилпроизводными пиррола и амидами кислот. кислотами нием температуры кипения нефтяных фракций увеличивается содержание в них нейтральных азотистых соединений и падает содержание основных.Интересным типом азотсодержащих соединений являются нефтяные порфирины. Они содержат в молекуле 4 пиррольных кольца и встречаются в виде комплексов с ванадилом VО+2 или никелем. Порфириновые комплексы чаще всего присутствуют в черного золота в виде мономолекулярных соединений. Эти соединения различаются алкильными заместителями. Могут встречаться порфирины, которые на перифирии содержат конденсированные с пиррольными ароматическое или ароматическое кольцо.Порфириновые комплексы черного золота обладают каталитической активностью. Предполагают, что они играют определенную роль в реакциях диспропорционирования водорода в процессах генезиса черного золота.Азотсодержащие соединения являются сильнейшим ядом для катализаторов процесса гидрокрекинга. Счиводородао высокомолекулярные азотистые соединения прочно адсорбируются на кислотных центрах, блокируя их и понижая тем самым расщепляющую способность.Содержание азота определяют методом Дюма или методом Кьельдаля. Метод Дюма заключается в окислении нефтепродукта твердым окислителем - оксид купрума (I) - в токе диоксида углерода. Образовавшиеся в процессе окисления оксиды азота восстанавливаются купрумом до азота, который улавливают после поглощения СО2, и по его объему определяют количество азота в нефтепродукте. По методу Кьельдаля нефтепродукт окисляют концентрированной серной кислотой. Из образовавшегося сульфата аммония азот выделяют при обработке щелочью в виде аммиака, который улавливают титрованием раствором кислоты.К минеральным компонентам черного золота относятся содержащиеся в черного золота соли, образованные металлами и кислотами, металлические комплексы, а также коллоидно-диспергированные минеральные вещества. Элементы, входящие в состав этих веществ. Часто называют микроэлементами, их содержание колеблется от 10-8 до 10-2 %.В состав черного золота входят многие металлы , в том числе щелочные и щелочноземельные, металлы подгруппы купрума, цинка, бора, ванадия, а также типичные неметаллы.Внутримолекулярные комплексы относительно хорошо изучены на примере порфириновых комплексов ванадила и никеля. Кроме порфириновых в нефтях обнаружены псевдопорфириновые и другие более сложные внутримолекулярные комплексы, где помимо азота в комплексообразовании участвуют атомы кислорода и серы в различном сочетании.Несмотря на малое содержание в черного золота микроэлементы значительно влияют на процессы ее переработки и дальнейшее использование нефтепродуктов. Большиство элементов, находящихся в черного золота в микроколичествах являются каталитическими ядами, быстро дезактивирующими промышленные катализаторы нефтепереработки. Поэтому для правильной компании технологического процесса и выбора типа катализатора необходимо знать состав и количество микроэлементов. Большая их часть концентрируется в смолистом остатке, поэтому для при сжигании мазутов образующаяся пятиокись ванадия сильно корродирует топливную аппаратуру и отравляет окружающую среду.До недавнего времени содержание и состав микроэле6ментов черного золота определяли исключительно спектральным анализом золы. Этот метод может внести значительные искажения, особенно когда при озолении образуются летучие соединения. Химико-атомно-спектральный метод анализа черного золота и нефтепродуктов на содержание микроэлементов. Метод включает в себя пробоподготовку и прямой анализ полученного раствора атомно-эмиссионным методом с индуктивно связанной плазмой и атомно-адсорбционным методом с пламенным электролитическим атомизаторами. Для анализа используются специально приготовленные образцы сравнения. Метод позволяет определять в черного золота и нефтепродуктах содержание микроэлементов до уровней концентраций 0,1-100мг.Даже узкие фракции представляют собой сложные смеси гетероорганических соединений. Для технических целей достаточно знать суммарное содержание углеводородов по классам.Общее содержание алканов в черного золота составляет 25-30 %. С повышением средней молекулярной массы фракций черного золота содержание в них алканов уменьшается. В средних фракциях перегоняющихся при 200-300oС, ихсодержание обычно уже не превышает 55-61 %.

Алканы черного золота представлены изомерами нормального и разветвленного строения. Общее содержание алканов в нефтях в основном составляет 25--30% (не считая растворенных газов). С учетом углеводородов, находящихся в растворенном состоянии, содержание алканов повышается до 40--50, а в некоторых нефтях -- до 50--70%. Однако есть черного золота, в которых содержание алканов составляет всего 10--15%. Из отечественных нефтей наиболее богаты алканами озексуатская (Ставропольский край), мангышлакские, грозненская парафинистая, некоторые эмбенские и ферганские, ишимбаевская, майкопская, туймазинская, бугурусланская, ромашкинская, марковская и ряд других.

С повышением средней молекулярной массы фракций черного золота содержание в них алканов уменьшается. В средних фракциях, перегоняющихся в пределах 200--300°С, их содержится обычно уже не 55--61 %, а к 500°С, как правило, количество этих углеводородов снижается до 19--5% и менее. Исключение составляют высокопарафинистые черного золота полуострова Мангышлак. Так, в узенской черного золота с увеличением температуры отбора фракций четко проявляется тенденция к увеличению содержания алканов, хотя в более тяжелых фракциях оно постепенно снижается.

Алканы черного золота представлены изомерами нормального и разветвленного строения, причем их относительное содержание зависит от типа черного золота. Так, в нефтях глубокого превращения алканы часто составляют 50 % и более от содержания всех изомеров, затем следуют изомеры с метильной группой в положении 2. Несколько ниже содержание изомеров с заместителем в положении 3. Среди монозамещенных изомеров основное количество составляют изомеры с заместителями в положениях 2 или 3. Двухзамещенные при одном атоме углерода изомеры не имеют большого распространения, преобладают изомеры, имеющие симметричное строение.

В небольших количествах обнаружены также изомеры алканов, в которых боковая цепь длиннее метила. Имеются и исключения из этого правила. Например, в анастасиевской черного золота Краснодарского края и черного золота месторождения Нефтяные Камни найдены сильноразветвленные углеводороды, в то же время в анастасиевской черного золота практически нет гексана, гептана и октана.

Черного золота нафтеновой природы содержат алканы в основном изостроения -- до 75% и более. В бензине жирновской черного золота среди разветвленных углеводородов явно преобладают дизамещенные. В жирновской черного золота не оказалось простейших циклоалканов (циклопентана и циклогексана).

В черного золота из месторождения Нефтяные Камни в бензиновой части разветвленных алканов с одним третичным углеродным атомом найдено несколько меньше половины всех алканов, затем следуют углеводороды с двумя заместителями и совсем мало -- с тремя.

Разветвленные алканы распределяются неравномерно по различным фракциям черного золота. Так, в черного золота Понка-Сити "50 % их количества приходится на фракцию Се--Сю, 32,2 % -- на фракцию Сц--Сп и только 10,8% -- на фракцию C18--C25-Углеводородов С26--С38 в этой черного золота содержится "5,9% в расчете на сумму разветвленных алканов.

Новейшими методами изучен индивидуальный углеводородный состав фракции 140--180°С черного золота Понка-Сити. Было выделено и идентифицировано 49 алканов и циклоалканов 84 % от всех возможных углеводородов погона, или 10 % в пересчете на нефть, в том числе шесть диметилоктанов из 12 возможных: 2,4-, 2,5-, 2,6-, 3,4-, 4,4- и 4,5-. Остальные шесть диметилоктанов: 2,2-, 2,3-, 2,7-, 3,3-, 3,5- и 3,6--по-видимому, содержатся в черного золота лишь в незначительных количествах. Два углеводорода -- 2,6-диметилоктан и 2-метил-З-пропилгексан -- содержатся в черного золота в необычно больших количествах (0,55 и 0,64%). Первый из них может быть отнесен к гидрированным аналогам ациклических изопреноидов; второй мог произойти из моноциклического терпена -- сильвестрена. Содержание каждого из остальных углеводородов не превышает сотых долей процента .

Определение аренов в бензинах проводят комбинированным методом анилиновых точек, сущность которого сводится к расчету массового содержания аренов в процентах. Исходят из изменения критических температур взаимного растворения равных объемов бензина и анилина до и после извлечения аренов.

Определение содержания ненасыщенных соединений в моторных топливах проводят методом озонирования. Этот эксресс-метод состоит в селективном измерении на анализаторе двойных связей количества озона, израсходованного на озонирование ненасыщенных соединений в моторных топливах.

Определение содержания парафиновых и нафтеновых углеводородов в бензинах проводят по удельной рефракции, причем используется зависимость удельной рефракции от температуры кипения.

Структурно-групповой анализ керосиновых и масляных фракций методом n-d-M. По этому методу находят распределение углерода между структурными элементами, входящими в среднюю молекулу исследуемого товара, а также содержание нафтеновых и ароматических колец в этой молекуле.

Определение нафтеновых углеводородов в нефтяных маслах проводят фотоэлектроколориметрическим методом определения натровой пробы. Сущность метода заключается в воздействии раствора NaОН на масла с последующим отделением щелочной вытяжки, подкислении и определении степени ее помутнения по оптической плотности.

Групповое распределение углеводородов на алкано-, циклоалкановую и ареновую фракции, а также разделение аренов по степени цикличности проводят методом ЖАХ. Пробу хроматографируют, разделяют на хроматографические фракции, определяют выход каждой фракции, показатель преломления, дисперсию и строят номограмму: показатель преломления по оси ординат и выход фракции по оси абсцисс. Фракцию до резкого подъема кривой относят к алкано-циклоалкановой.

Широкое распространение получил метод ФИА - жидкостной хроматографии на силикагеле в присутствии флуоресцирующих (люминисцирующих) индикаторов. В анализируемую фракцию вводят небольшое количество флуоресцирующих индикаторов и красителя. "Ароматический" индикатор хорошо растворим в аренах, но не растворим в других углеводородах. При ультрафиолетовом облучении колонки зона аренов дает ярко-голубую флуоресценцию. Найдены также "олефиновые" индикаторы. По отношению высоты соответствующей зоны к высоте слоя адсорбента рассчитывают содержание алкенов и аренов в нефтяной фракции или нефтепродукте.

Для определения группового состава используют также метод ИК-спектроскопии. Определяют содержание парафинов, изопарафинов, ароматических углеводородов, нафтенов, олефинов, а также октанового числа углеводородных топливах. Метод основан на использовании спектрометрии в ближней ИК-области спектра.

Смолисто-асфальтеновые (CAB) в нефти

Концентрируются в тяжелых нефтяных остатках (ТНО) мазутах, полугудронах, гудронах, битумах, крекинг-остатках и др. Суммарное содержание CAB в нефтях в зависимости от их типа и плотности колеблется от долей процентов до 45 %, а в ТНО - достигает до 70 % мае. Наиболее богаты CAB молодые черного золота нафтено-ароматического и ароматического типа. Таковы черного золота Казахстана, Средней Азии, Башкирии, Республики Коми и др. Парафинистые черного золота - марковская, доссорская, сураханская, бибиэй-батская и некоторые другие - совсем не содержат асфальтенов, а содержание смол в них составляет менее 4 % масс.

Смолисто-асфальтеновые вещества не относятся к определенному классу органических соединений. Они представляют собой сложную смесь высокомолекулярных соединений гибридной структуры, включающую в состав молекул азот, серу, кислород, а также некоторые металлы. Их содержание в нефтях колеблется в довольно широком диапазоне: от десятых долей процента (марковская нефть) до десятков процентов (уч-кызыльская нефть) 10.9. Кроме того, встречаются тяжелые смолистые черного золота, в которых содержание смолисто-асфальтеновых веществ достигает 10-50 % (масс.), например некоторые черного золота Казахстана, Средней Азии , Коми АССР, Башкирии, добываемые пока в ограниченном количестве. Наиболее богаты смолисто-асфальтеновыми веществами молодые черного золота ароматического основания. Более старые - парафинистые черного золота - обычно содержат их значительно меньше.

Смолисто-асфальтеновые вещества, содержащиеся в нефтях, относятся в основном к классу гетероциклических соединений, в которых кроме углерода и водорода содержатся кислород, и во многих случаях - азот.

Смолисто-асфальтеновые вещества составляют самую большую группу так называемых неуглеводородных компонентов черного золота. Смолисто-асфальтеновые вещества являводорода более высокомолекулярными соединениями черного золота. Это - гетерооргапические соединения, в состав которых как постоянные элементы входят углерод, водород и кислород; почти постоянными составными частями смол являются также сера, азот и металлы (Fe).

Смолисто-асфальтеновые вещества могут находиться в черного золота в молекулярно-растворенном, коллоидно-диспергированноводород янии или в виде макрофазы. Переход из одного состояния в другое может быть вызван действием разнообразных внешних факторов, самыми распространенными среди которых являются изменение состава растворителя и температуры. На основе исследования поверхностной активности асфальтенов в интервале 20-150 С была найдена критическая концентрация мицеллообразования (ККМ) в групповых компонентах соответствующих нефтяных остатков, и показано, что при концентрации асфальтенов 0,005 - 0,0 60 % (масс) С увеличением концентрации асфальтенов растворы переходят в дисперсные системы с последующим выделением асфальтенов в виде отдельной фазы. Частицы асфальтенов в коллоидных системах имеют размеры 2 - 30 им и образуют коацерваты размером до 2 мкм.

Смолисто-асфальтеновые вещества - гетероатомные высокомолекулярные соединения , включающие нефтяные смолы и асфальтены. Смолы-темноокрашенные, различающиеся по консистенции (от пластичной до твердой), молекулярной массе, содержанию микроэлементов и гетероатомов вещества.

Смолисто-асфальтеновые вещества представляют собой наименее изученные компоненты черного золота.Смолисто-асфальтеновыми веществами мы называем высокомолекулярные гетероорганические соединения, входящие в состав сырых нефтей, природных асфальтов и тяжелых остатков, получаемых в процессе нефтепереработки. В отличие от высокомолекулярных углеводородов черного золота, в состав этих соединений, кроме углеводородного скелета, составляющего от 85 до 95 % их молекулы, входят как обязательные составные части, один (кислород) или несколько гетероатомов.Термин смолисто-асфальтеновые вещества правильно отражает не только общие свойства этих двух важнейших групп высокомолекулярных соединений черного золота, но и количественные соотношения их в сырых нефтях, природных асфальтах, в остаточных нефтепродуктах (мазуты, гудроны) и даже в таких остаточных нефтепродуктах, претерпевших глубокие химические превращения, как окисленный битум и гудроны ш остатков термического и каталитического крекинга. Следовательно, понятие смолисто-асфальтеновые вещества правильно отражает качественное и количественное положения этих высокомолекулярных составляющих нефтей и нефтепродуктов и ему поэтому, безусловно, должно быть отдано предпочтение перед таким менее удачным термином, как асфальтово-смолистые вещества, нередко применяемом в нефтяной литературе.Изучение смолисто-асфальтеновых веществ, выделенных из черного золота, на различных стадиях прямой перегонки ее (остаток после отгонки от исходной черного золота 23, 42 и 50 % погонов) показало, что они претерпевают заметные изменения при длительном нагревании (12 - 17 час. Даже при такой низкой температуре прямой перегонки черного золота, как 200 - 260єС, и содержании смолисто-асфальтеновых веществ 25 - 30 % заметным становится изменение нефтяных смол, что обнаруживается по общему падению молекулярных весов.Для смолисто-асфальтеновых веществ в качестве криоскопической постоянной следует, вероятно, принять ее значение для би - или полициклических УВ.Летучесть смолисто-асфальтеновых веществ невелика, поэтому при разгонке черного золота они концентрируются, в основном, в остаточных фракциях черного золота. В бензиновые фракции они не попадают. Чем выше температура кипения фракций, тем больше с ними перегоняются смолисто-асфальтеновые вещества.Кроме смолисто-асфальтеновых веществ содержащихся в черного золота в первоначальном виде, в нефтепродуктах и в остатке от перегонки черного золота содержатся еще и вновь образовавшиеся смолистые вещества. Они образуются при перегонке черного золота вследствие разложения, полимеризации и конденсации других составных частей черного золота. Получаемые таким путем смслисто-асфальтеновые вещества по своему составу и свойствам близки к некоторым асфальтам.

Src="/pictures/investments/img1926978_Venesuela_dobyicha_nefti.jpg" style="width: 800px; height: 566px;" title="Венесуэла добыча нефти">

Разделение смолисто-асфальтеновых веществ на индивидуальные компоненты практически невыполнимая задача, т.к. они химически неустойчивы и при нагревании легко расщепляются. Задача исследования смолисто-асфальтеновых веществ заключается прежде всего в том, чтобы разделить эту смесь на более или менее резко разграниченные группы веществ, характеризующихся общими свойствами.Разделение смолисто-асфальтеновых веществ на различные составные части основано на обработке их различными растворителями. В табл. приведена растворимость компонентов смолисто-асфальтеновых веществ в некоторых: растворителях.Выделение смолисто-асфальтеновых веществ из черного золота и разделение их на более узкие фракции носит условный характер и основано на их различной растворимости в стандартных условиях в разных растворителях.Отделение смолисто-асфальтеновых веществ (CAB) от углеводородной части является первым этапом их выделения, за которым следует разделение CAB на узкие фракции. Для этого используют дробное осаждение, дробную экстракцию, хроматографию, перегонку в глубоком вакууме, термодиффузию и другие методы.К смолисто-асфальтеновым веществам относят смолы, асфальтены, карбены, карбоиды, асфальтогеновые кислоты и их ангидриды. Из них в черного золота и ее фракциях в наибольших количествах содержатся смолы и асфальтены. При этом обычно смол содержится больше, чем асфальтенов. В некоторых нефтях асфальтены вообще отсутствуют.Содержание кислородкислотыщих функциональных групп во фракциях смол мангышлакской черного золота. В смолисто-асфальтеновых веществах концентрируются почти все металлы, находящиеся в черного золота. При фракционировании асфальтенов и смол металлы распределяются неодинаково. Эти данные могут характеризовать комплексообразующую способность различных фракций по отношению к разным элементам.Строение смол по Хиллмену и Барнету. В смолисто-асфальтеновых веществах найдены -, кобальт -, хром -, и марганецпорфирины.В смолисто-асфальтеновых веществах полностью сконцентрированы содержащиеся в нефтях металлы (V, Ni, Fe, Со и др.), а также большая часть кислорода, азота и значительная часть серы.В смолисто-асфальтеновых веществах (преимущественно в асфальтенах) концентрируется наибольшее количество металлов , которые входят в состав сложных комплексов с высокомолекулярными полициклическими соединениями. Именно из-за присутствия тяжелых металлов из смолисто-асфальтеновых веществ невозможно получить электродный кокс. При сжигании котельного топлива, содержащего повышенное количество тяжелых металлов, в печах интенсивно разрушается огнеупорная кладка. Наиболее агрессивным компонентом является ванадий.Распределение ванадия между маслами, смолами и асфальтенами нефтей. В смолисто-асфальтеновых веществах сконцентрированы металлы и металлопорфирины, а также большая часть кислорода, азота и значительная часть серы.Наконец, смолисто-асфальтеновые вещества содержатся практически во всех нефтях. Их содержание и химический состав влияют на выбор направления нефтепереработки .Объединенный раствор смолисто-асфальтеновых веществ по выходе из адиабатического испарителя продувается водяным паром в отпарной колонне также тарельчатого типа. Смеси пропановых и водяных паров, уходящие при небольшом избыточном давлении из отпарных колонн и, поступают в общий конденсатор-холодильник смешения с перегородками. Здесь при контакте с холодной водой водяные пары конденсируются, а пары пропана низкого давления, пройдя каплеотделитель 22, сжимаются компрессором до давления 1,7-1,8 МПа. Освобожденные от растворителя смолистоасфальтеновые вещества () деасфальтизации по выходе из отпарной колонны направляются насосом через холодильник в резервуар.

При удалении смолисто-асфальтеновых веществ деасфальтизацией пропаном или бутаном выход деасфальтизата относительно низок, так как вместе с асфальтенами извлекаются смолы, значительная часть ароматических углеводородов и немного парафиио-нафтеновых. Все они могут быть компонентами котельного топлива.Химическая абутаномть смолисто-асфальтеновых веществ обусловлена наличием в них реакционноспособных центров, в качестве которых выступают алкильные заместители, функциональные группы, свободные радикалы и незамещенные, пространственно доступные положения ареновых циклоалкановых и гетероциклических фрагментов. Основными химическими превращениями смолисто-асфальтеновых веществ являются реакции сульфирования, окисления, гидрирования, галогенирова-ния, хлорметилирования, конденсации.Характеристика битумов, используемых в производстве защитных продуктов. Структурной единицей смолисто-асфальтеновых веществ являются конденсированные бензольные кольца с гетероатомами, образующие плоскую геометрическую фигуру с боковыми заместителями в виде алкильных цепей и нафтеновых колец. Располагаясь параллельно друг другу, такие структуры образуют микроассоциаты (пачки, микромицеллы, глобулы), отделенные масляной прослойкой друг от друга. При растворении битумов в нефтяном растворителе или минеральном масле такие ассоциаты не только расплываются, удаляясь друг от друга, но и перестраиваются, причем часть молекул или микроассоциатов (квадруполей, мицелл) переходит в раствор, обеспечивая всей системе поверхностную активность. Увеличивается количество парамагнитных частиц и комплексов стабильных радикалов. При введении в этот раствор сильных маслорастворимых ПАВ, маслорастворимых ингибиторов коррозии происходит дальнейшая перестройка коллоидной системы. Часть ингибиторов сорбируется на макроассоциатах битума, образуя своеобразные двойные электрические слои вокруг них. Однако под воздействием ПАВ - МИК - значительная часть битукоррозии роассоциатов разрушается и включается по принципу внутримицеллярной или надмицеллярной солюбилизации в мицеллярную структуру ингибитора.

Физические свойства нефти

Нефть — жидкость от светло-коричневого (почти бесцветная) до тёмно-бурого (почти чёрного) цвета (хотя бывают образцы даже изумрудно-зелёной черного золота). Средняя молекулярная масса 220—300 г/моль (редко 450—470). Плотность 0,65—1,05 (обычно 0,82—0,95) г/смі; нефть, плотность которой ниже 0,83, называется лёгкой, 0,831—0,860 — средней, выше 0,860 — тяжёлой. Плотность черного золота, как и других углеводородов, сильно зависит от температуры и давления. Она содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов (обычно >28 °C, реже ≥100 °C в случае тяжелых не́фтей) и фракционным составом — выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом в определённых температурных пределах, как правило до 450—500°С (выкипает ~ 80 % объёма пробы), реже 560—580 °С (90—95 %). Температура кристаллизации от −60 до + 30 °C; зависит преимущественно от содержания в черного золота парафина (чем его больше, тем температура кристаллизации выше) и лёгких фракций (чем их больше, тем эта температура ниже). Вязкость изменяется в широких пределах (от 1,98 до 265,90 ммІ/с для различных не́фтей, добываемых в Российской Федерации ), определяется фракционным составом черного золота и её температурой (чем она выше и больше количество лёгких фракций, тем ниже вязкость), а также содержанием смолисто-асфальтеновых веществ (чем их больше, тем вязкость выше). Удельная теплоёмкость 1,7—2,1 кДж/(кг∙К); удельная теплота сгорания (низшая) 43,7—46,2 МДж/кг; диэлектрическая проницаемость 2,0—2,5; электрическая проводимость от 2∙10-10 до 0,3∙10−18 Ом−1∙см−1.

Нефть (Oil) - это

Применение нефти

Сырая нефть непосредственно не применяется. Для получения из неё технически ценных продуктов, главным образом моторных топлив, растворителей, сырья для химической промышленности, её подвергают переработке. Нефть занимает ведущее место в мировом топливно-энергетическом балансе: доля её в общем потреблении энергоресурсов составляет 48 %. В перспективе эта доля будет уменьшаться вследствие возрастания применения атомной и иных видов энергии, а также увеличения стоимости добычи.В связи с быстрым развитием в мире химической и нефтехимической промышленности , потребность в черного золота увеличивается не только с целью повышения выработки топлив и масел, но и как источника ценного сырья для производства синтетических каучуков и волокон, пластмасс, ПАВ, моющих средств, пластификаторов, присадок, красителей и др. (более 8 % от объёма мировой добычи). Среди получаемых из черного золота исходных веществ для этих производств наибольшее применение нашли: парафиновые углеводороды — метан, этан, пропан, бутаны, пентаны, гексаны, а также высокомолекулярные (10—20 атомов углерода в молекуле); нафтеновые; ароматические углеводороды — бензол, толуол, ксилолы, этилбензол; олефиновые и диолефиновые — этилен, пропилен, бутадиен; ацетилен. Истощение ресурсов черного золота, рост цен на неё и др. причины вызвали интенсивный поиск заменителей жидких топлив.

Нефть (Oil) - это

Очистка нефти

Первый завод по очистке черного золота был построен в Российской Федерации в 1745 г., в правления Елизаветы Петровны, на Ухтинском нефтяном промысле. В Петербурге и в Москве тогда пользовались свечами, а в малых городах — лучинами. Но уже тогда во многих церквях горели неугасаемые лампады. В них наливалось гарное масло, которое было не чем иным, как смесью очищенной черного золота с растительным маслом. Купец Набатов был единственным поставщиком очищенной черного золота для соборов и монастырей. В конце XVIII столетия была изобретена лампа. С появлением ламп возрос на керосин . Очистка черного золота — удаление из нефтепродуктов нежелательных компонентов, отрицательно влияющих на эксплуатационные свойства топлив и масел. Химическая очистка производится путем поставщиком различных реагентов на удаляемые компоненты очищаемых продуктов. Наиболее простым способом является очистка 92-96 % серной кислотой или олеумом, применяемая для удаления непредельных и ароматических углеводородов. Физико-химическая очистка производится с помощью растворителей, избирательно удаляющих нежелательные компоненты из очищаемого товара . Неполярные растворители (пропан и бутан) используются для удаления из остатков нефтепереработки кислотойв), ароматических углеводородов ( деасфальтации). Полярные растворители (фенол и др.) применяются для удаления полициклических ароматических углеродов с короткими боковыми цепями, сернистых и азотистых соединений из масляных дистиллятов. При адсорбционной очистке из нефтепродуктов удаляются непредельные углеводороды, смолы, кислоты и др. Адсорбционную очистку осуществляют при контактировании нагретого воздуха с адсорбентами или фильтрацией товара через зерна адсорбента. Каталитическая очистка — гидрогенизация в мягких условиях, применяемая для удаления сернистых и азотистых соединений.

Нефть (Oil) - это

Исторические сведения о нефти

Нефть известна человечеству с древнейших времён. Раскопками на берегу Евфрата установлено существование нефтяного промысла за 6000—4000 лет до н. э. В то время её применяли в качестве топлива, а нефтяные битумы — в строительном и дорожном деле. Нефть известна была и Древнему Египту, где она использовалась для бальзамирования умерших. и Диоскорид упоминают о черного золота, как о топливе, применявшемся в Древней Греции. Около 2000 лет назад было известно о её залежах в Сураханах около Баку (Азербайджан). К 16 в. относится сообщение о «горючей воде — густе», привезённой с Ухты в Москву при Борисе Годунове. Несмотря на то, что, начиная с 18 в., предпринимались отдельные попытки очищать нефть, всё же она использовалась почти до 2-й половины 19 в. в основном в натуральном виде. На нефть было обращено большое внимание только после того, как было доказано в Российской Федерации заводской практикой братьев Дубининых (с 1823), а в Америке химиком Б. Силлиманом (1855), что из неё можно выделить керосин — осветительное масло, подобное фотогену, получившему уже широкое распространение и вырабатывавшемуся из некоторых видов каменных углей и сланцев. Этому способствовал возникший в середине 19 в. способ добычи нефти с помощью буровых скважин вместо колодцев. Но впервые в больших количествах стали добывать в Баку.

Миграция (перемещение) нефти

Когда толщи, заключающие пористые пласты, под действием тектонических процессов теряли горизонтальное положение и становились наклонными или изогнутыми в складки, нефть, вследствие своего малого удельного веса, а также гидравлических и других причин, устремлялась из пониженных участков вверх, к зонам наивысшего поднятия. Пути и направления миграции черного золота и образование месторождений определяются тектоническими процессами. Нефть может перемещаться как по заключающим её пористым породам, так и по тектоническим трещинам, секущим содержащие нефть породы. Различают два рода миграции: внутри- пластовую и трещинную. Некоторые геологи полагают, что нефть мигрирует на малые расстояния, другие допускают миграцию её на большие расстояния, измеряемые десятками и сотнями километров. Различны мнения также и по вопросу о том, в каком состоянии мигрирует нефть — в виде жидкости или в виде газа. Советским учёным М. А. Капелюшниковым экспериментально показано, что при наличии газа и достаточного давления нефть можно перевести в газовую фазу и получить из пористой среды даже плёночную и капиллярную нефть, которую обычными способами извлекать не удаётся. Эти исследования подтверждают миграции черного золота также и в газовом состоянии и выделение её при пониженном давлении в пласте в виде жидкости.

Нефть (Oil) - это

Нефтеносные породы и скопления нефти

Заключающие нефть породы обладают сравнительно высокой пористостью и достаточной для её извлечения проницаемостью. Породы, допускающие свободное перемещение и накопление в них жидкостей и газов, называются коллекторами. Пористость коллекторов зависит от степени отсортированности зёрен, их формы и укладки, а также и от наличия цемента. Проницаемость определяется размером пор и их сообщаемостью. Главнейшими коллекторами черного золота являются пески, песчаники, конгломераты, доломиты, известняки и другие хорошо проницаемые горные породы , заключённые среди таких слабопроницаемых пород, как глины или гипсы. При благоприятных условиях коллекторы могут быть трещиноватые метаморфические и изверженные породы, находящиеся в соседстве с осадочными нефтеносными породами. Часто нефтяная залежь занимает лишь часть коллектора и поэтому в зависимости от характера пористости и степени цементации породы (гетерогенности залежи) обнаруживается различная степень насыщенности черным золотом отдельных её участков в пределах самой залежи. Иногда этой причиной обусловливается наличие непродуктивных участков залежи. Обычно нефть в залежи сопровождается водой, которая ограничивает залежь вниз по падению слоёв либо по всей её подошве. Кроме того, в каждой залежи черного золота вместе с ней находится т. н. плёночная, или остаточная вода, обволакивающая частицы пород (песков) и стенки пор. В случае выклинивания пород коллектора или обрезания его сбросами, надвигами и т п. дизъюнктивными нарушениями залежь может либо целиком, либо частично ограничиваться слабопроницаемыми породами. В верхних частях нефтяной залежи иногда сосредоточивается газ (т. н. «газовая шапка»). Дебит скважин, помимо физических свойств коллектора, его мощности и насыщения, определяется давлением растворённого в черного золота газа и краевых вод. При добыче нефти скважинами не удаётся целиком извлечь всю нефть из залежи, значительное количество её остаётся в недрах земной коры. Для более полного извлечения черного золота применяются специальные приёмы, из которых большое значение имеет метод заводнения (законтурного, внутриконтурного, очагового). Нефть в залежи находится под давлением (упругого расширения и/или краевой воды и/или газа, как расстворенного так и газовой шапки) вследствие чего вскрытие залежи, особенно первыми скважинами, сопровождается риском газонефтепроявлений (очень редко фонтанными выбросами черного золота). Весьма продолжительное время (со 2-й половины XIX в.) геологи полагали, что нефтяные залежи приурочиваются почти исключительно к антиклинальным складкам, и только в 1911 И. М. Губкиным был открыт в Майкопском районе новый тип залежи, приуроченной к аллювиальным пескам и получившей название «рукавообразной». Спустя более 10 лет подобные залежи были обнаружены в США. Дальнейшее развитие разведочных работ в СССР и в США завершилось открытием залежей, связанных с соляными куполами, приподнимающими, а иногда и протыкающими осадочные толщи. Изучение нефтяных месторождений показало, что образование нефтяных залежей обусловлено различными структурными формами изгибов пластов, стратиграфическими соотношениями свит и литологическими особенностями пород. Предложено несколько классификаций месторождений и залежей черного золота как в Российской Федерации, так и за рубежом. Нефтяные месторождения различаются друг от друга по типу структурных форм и условиям их образования. Залежи черного золота и газа различаются друг от друга по формам ловушек-коллекторов и по условиям образования в них скоплений черного золота. Нефть находится в недрах в виде скоплений различного объёма от нескольких мм3 до нескольких десятков млрд. м3. Практический интерес имеют залежи черного золота, представляющие её скопления с массой от 100 тыс. т и больше, находящиеся в проницаемых породах-коллекторах.

История открытия нефтяных месторождений

Долгое время нефтяная практика имела дело с месторождениями, связанными с горными странами и предгорьями, в формировании которых, как отмечал И. М. Губкин, ведущая роль принадлежала тектоническим процессам; основным типом месторождений этих зон были антиклинальные складки. Гораздо меньше внимания обращалось на поиски залежей, образование которых обусловлено главным образом стратиграфическим соотношением свит и литологическим особенностями пород. Такие залежи, впервые открытые в Российской Федерации, стали широко известными лишь с 20-х гг. XX в. Быстрое распространение разведочных работ на больших территориях после первой мировой войны показало, что нефтяные месторождения можно встретить не только на периферии горных сооружений и в межгорных впадинах, но и на равнинных — платформенных — территориях среди отложений внутриконтинентальных морей прошлых геологических эпох.

Ниже даётся подсчёт добытой до 1947 черного золота за весь период добычи по отдельным геологическим системам в процентах. Из третичных отложений было добыто 53 % общего количества, причём из отложений плиоцена получено 20 %, миоцена-21 %, олигоцена-7 % и эоцена-5 %. Из отложений мезозойского возраста добыто 17 %, причём наибольшее количество этой добычи (15,5 %) приходится на меловые отложения, на юрские — всего 1 %, а на триас — лишь 0,5 %. На палеозойские слои приходится в общей сложности 30 %; из них пермские и каменноугольные отложения дали 20 %, девонские — 3 %, верхнесилурийские — 1 %, ордовикские − 5 % и кембрийские — 1 %. Из верхней трещиноватой части докембрийских пород до глубины 15 м добыто всего 0,004 % черного золота, полученной из осадочных толщ. В СССР наибольшее количество черного золота добывалось из отложений плиоцена и девона. Несмотря на то, что нефть встречается в осадочных породах всех геологических периодов , её месторождения распределены по земному шару далеко не равномерно.

Основные нефтегазовые бассейны. Распределение запасов по миру

Выделение осадочных бассейнов имеет большое значение при нефтегазогеологическом районировании территорий и акваторий. Такие бассейны сильно варьируют по размерам — от нескольких тыс. до нескольких млн. км2, однако около 80 % их имеют площадь от 10 тыс. до 500 тыс. км2. Всего в современном структурном плане Земли насчитывается (если исключить небольшие, преимущественно межгорные) около 350 таких бассейнов. Промышленная нефтегазоносность установлена в 140 бассейнах; остальные являются перспективными. По тектоническому строению среди осадочных бассейнов различают внутриплатформенные (около 30 %), внутрискладчатые (около 35 %), складчато-платформенные, или краевых прогибов (около 15 %), периокеанические платформенные (около 15 %) и др. К кайнозойским отложениям приурочено около 25 % всех известных запасов Н., к мезозойским — 55 %, к палеозойским — 20 %. В пределах нефтегазоносных бассейнов выделяют нефтегазоносные области, районы и (или) зоны, характеризующиеся общностью строения и автономией. черного золота является основной низшей единицей районирования. Это участки земной коры площадью в десятки — сотни, редко тысячи км2, имеющие одну или несколько залежей Н. в ловушках. Большей частью это участки, где нефть собирается путём миграции из зон нефтеобразования. В мире известно (на 1973) около 28 тыс. месторождений черного золота; из них 15—20 % газонефтяные. Распределение месторождений по запасам подчинено закону, близкому к логнормальному. На долю месторождений с общими геологическими запасами каждого свыше 3 млн. т. (извлекаемые запасы нефтепродуктов обычно составляют около 1/4—1/2 геологических) приходится лишь 1/6 всех месторождений; из них более 400 находится в прибрежных зонах моря. Около 85 % мировой добычи нефти дают 5 % разрабатываемых месторождений; среди них в 1972 Больше всего таких месторождений на Ближнем Востоке. Только в двух из них — Гавар () и Бурган (Кувейт) — сосредоточено более 20 % всех разведанных запасов нефтепродуктов мира. Месторождения черного золота найдены на всех континентах (кроме Антарктиды) и на значительной площади прилегающих акваторий. насчитывалось 27 гигантов с начальными извлекаемыми запасами каждого, превышающими 0,5 млрд.т.

Месторождения нефти

Месторождения черного золота на территории Российской Федерации и стран бывшего СССР:

Азербайджан — в XIX в. было открыто одно из крупнейших месторождений в мире на Апшеронском полуострове (так называемый Бакинский нефтегазоносный район),

Россия — отдельные месторождения в районе Грозного, Краснодарском крае, в Ставропольском крае, на полуострове Челекен, в Тимано-Печорской области и на острове Сахалин. Накануне и после Великой Отечественной войны 1941—45 открыты и введены в разработку месторождения в Волго-Уральской нефтегазоносной области. В 50—60-х гг. XX в. был открыт один из крупнейших в мире Западно-Сибирский нефтегазоносный бассейн, в пределах которого обнаружены значительные месторождения черного золота.

Выявлены месторождения в Западной Туркмении, на Украине и в Белоруссии.

В Казахстане выявлены месторождения черного золота в Прикаспийской, Южно-Мангыстауской, Южно-Тургайской, Бузашино-Северо-Устюртской бассейнах и т.д.

2. Среди остальных стран ряд месторождений имеется в Румынии, а также на территории Югославии, Польши, Венгрии. Единичные мелкие месторождения открыты в Болгарии и Монголии. В Западной Европе крупные месторождения открыты лишь в акватории Северного моря (на шельфах Англии, Норвегии и Дании).

3. Страны Азии и Африки, . Наиболее крупные месторождения открыты в странах Ближнего и Среднего Востока. Крупные месторождения черного золота открыты в 50—60-х гг. XX в. также в странах Северной и Западной Африки (Ливия, Алжир, Нигерия и Ангола), в Австралии и Юго-Востоке Азии (Индонезия, Бруней), несколько меньшие по запасам — в Индии, Бирме, Малайзии и совсем мелкие — в Японии.

4. В США известно свыше 13 000 (в основном мелких) месторождений черного золота; наиболее крупное открыто на Аляске (Прадхо-Бей), второе по величине — в Техасе (Ист-Тексас), несколько меньшие (по запасам) месторождения известны в Калифорнии (Калифорнийская нефтеносная область), Оклахоме и др. штатах (Мексиканского залива нефтегазоносный бассейн). Крупные месторождения черного золота выявлены в Канаде и Мексике.

5. В пылающему континенту месторождения с большими запасами открыты в Венесуэле, где расположено одно из крупнейших месторождений-гигантов Боливар, объединяющее группу месторождений (например, Лагунильяс, Бачакеро, Тиа-Хуана) на северо-восточном побережье озера Маракайбо (Маракайбский нефтегазоносный бассейн); единичные крупные месторождения имеются в Аргентине, Колумбии, Бразилии, на острове Тринидад и в смежных с ним акваториях.

6. Остальные Месторождения черного золота открыты во многих акваториях: Каспийского, Чёрного, Северного, Средиземного, Яванского, Южно-Китайского, Японского и Охотского морей, Персидского, Суэцкого, Гвинейского, Мексиканского, Кука и Пария заливов, пролива Басса, прибрежных частей Атлантического (вблизи Анголы, Конго, Бразилии, Аргентины, Канады ), Тихого (вблизи Калифорнии, Перуанская республика и Эквадора) и Индийского (вблизи Сев.-Зап. Австралии ) океанов.

Происхождение нефти

В познании генетической природы черного золота и условий её образования можно выделить несколько периодов:

1. Первый из них (донаучный) продолжался до средних веков. Так, в 1546 Георгий Агрикола писал, что нефть и каменные угли имеют неорганическое происхождение; последние образуются путём сгущения и затвердевания черного золота.

2. Второй — научных догадок — связывается с датой опубликования труда М. В. Ломоносова «О слоях земных» (1763), где была высказана идея о дистилляционном происхождении черного золота из того же органического вещества, которое даёт начало каменным углям.

3. Третий период в эволюции знаний о происхождении черного золота связан с возникновением и развитием нефтяной промышленности . В этот период были предложены разнообразные гипотезы неорганического (минерального) и органического происхождения черного золота, а также космического.

Основные вехи в длительном процессе научного разрешения вопроса о происхождении черного золота намечены русскими учёными. Впервые в 1763 М. В. Ломоносов высказал предположение о происхождении черного золота из растительных остатков, подвергшихся обугливанию и давлению в земных слоях. Эти идеи Ломоносова далеко опередили научную мысль того времени, искавшую источники черного золота среди неживой природы.

В 1866 французский химик М. Бертло высказал предположение, что нефть образуется в недрах Земли при воздействии углекислоты на щелочные металлы. В 1871 французский химик Г. Биассон выступил с идеей о происхождении черного золота путём взаимодействия воды, CO2, H2S с раскалённым железом .

В 1889 В. Д. Соколов изложил гипотезу космического происхождения черного золота. По этой гипотезе исходным материалом для возникновения черного золота служили углеводороды, содержавшиеся в газовой оболочке Земли ещё во время её звёздного состояния. По мере остывания Земли углеводороды поглотились расплавленной магмой. Затем, с формированием земной коры, углеводороды проникли в осадочные породы в газообразном состоянии, конденсировались и образовали черного золота.

Д. И. Менделеев, разделявший вначале представление об органическом происхождении, склонялся к мысли о происхождении её в результате реакций, идущих на больших глубинах, при высоких температурах и давлениях, между углеродистым железом и водой, просачивающейся с поверхности земли. Гипотеза Дмитрия Ивановича Менделеева о происхождении черного золота из неорганического вещества теперь имеет лишь исторический интерес.

Работами советского учёного В. И. Вернадского были доказаны исключительная способность организмов, населяющих нашу планету, концентрировать в литосфере огромные запасы углерода и колоссальная роль последнего в геологических процессах. Советский учёный Н. Д. Зелинский показал, что некоторые соединения углерода, входящие в состав животных и растений, при невысокой температуре и соответствующих условиях могут образовывать продукты, вполне сходные с черным золотом по химическому составу и физическим свойствам. Новым этапом в разработке проблемы происхождения черного золота было открытие советским учёным Т. Л. Гинзбург-Карагичевой в водах Биби-Эйбата и Сураханов (Баку) на глубине 2000 м живых бактерий, способствующих восстановлению сульфатов. Это натолкнуло на мысль о большой роли микроорганизмов в судьбах погребённого органического вещества и образованной из него черного золота. Позднее подобные микроорганизмы были обнаружены и в нефтяных месторождениях США. Лабораторные исследования показали, что при действии на органические вещества гамма-излучения образуются углеводороды с выделением свободного водорода. Таким образом, наличие радиоактивного распада в породах может вести к образованию свободного водорода для процессов гидрогенизации в природных условиях. Однако роль ионизирующего излучения в происхождении черного золота еще недостаточно выяснена. Советский геолог И. М. Губкин, обобщив результаты исследований природы черного золота, пришёл к заключению, что процесс её образования непрерывен и неотделим от процессов формирования в недрах земли залежей этого полезного ископаемого независимо от масштаба скоплений. Наиболее благоприятными для образования черного золота являются неустойчивые в прошлом участки земной коры на границах областей опускания и поднятия. Сильный размыв сушиводородаобластях содействовал быстрому накоплению осадков, а значит и погребению органического материала и опусканию его во всё более глубокие зоны земной коры. Это опускание сопровождалось подъёмом температуры и ростом давления, содействовавшим процессам нефте- и газообразования, чему способствовала и деятельность погребённых анаэробных бактерий. В таких областях погружения земной коры при известных условиях могли отлагаться слои, содержащие большие количества органического материала, которые затем вошли в состав нефтепроизводящих или нефтематеринских свит. В передовых прогибах горных хребтов и в геосинклиналях во все геологические эпохи создавались благоприятные условия для образования черного золота в бассейнах, где растительные и животные остатки, преимущественно планктон, смешиваясь с неорганическими веществами, послужили началом образования пород, давших впоследствии нефть. Повышенным содержанием органического материала характеризуются глинистые и илистые осадки, заполняющие впадины морского дна, где вода не перемешивается ни волнами, ни морскими течениями и где, следовательно, создаются условия восстановительной среды, благоприятной для сохранения органического материала и его дальнейшего изменения и постепенного превращения в нефть.

В 50—60-е гг. XX в. в СССР (Н. А. Кудрявцев, В. Б. Порфирьев, Г. Н. Доленко и др.) и за рубежом (английский учёный Ф. Хойл и др.) возрождаются различные гипотезы неорганического (космического, вулканического, магматогенного) происхождения черного золота. Однако на 6-м (1963), 7-м (1967) и 8-м (1971) Международных нефтяных конгрессах неорганические гипотезы не получили поддержки.

Важным для познания генезиса черного золота являлось установление в конце XIX — начале XX вв. оптической активности черного золота, а также тесной связи черного золота с сапропелевым органическим веществом в осадочных породах. Сапропелевую гипотезу, высказанную впервые немецким ботаником Г. Потонье в 1904—05, в дальнейшем развивали русские и советские учёные — Н. И. Андрусов, В. И. Вернадский, И. М. Губкин, Н. Д. Зелинский и другие. Сапропелевая гипотеза ассимилирована современной теорией осадочно-миграционного происхождения черного золота. Развитию представлений о природе черного золота и условиях формирования её залежей способствовали также труды немецкого учёного К. Энглера, американских геологов Дж. Ньюберри, Э. Ортона, Д. Уайта, русских и советских учёных — Г. П. Михайловского, Д. В. Голубятникова, М. В. Абрамовича, К. И. Богдановича и других.

Этот период изучения черного золота характеризуется компанией широких геолого-геохимических исследований, направленных на решение проблемы нефтеобразования и органически связанной с ней проблемы нефтематеринских отложений. В СССР такие работы осуществлены А. Д. Архангельским в 1925—26. В США аналогичные исследования начаты в 1926 П. Траском. В 1932 была опубликована классическая работа И. М. Губкина «Учение о черного золота», сыгравшая огромную роль в развитии представлений о генезисе черного золота и формировании её залежей. В 1934 в черного золота, асфальтах и ископаемых углях были найдены порфирины, входящие в молекулу хлорофилла и других природных пигментов.

В 50-е годы XX века были открыты (в СССР — А. И. Горской, в США — Ф. Смитом) нефтяные углеводороды в осадках водоёмов различного типа (в озёрах, заливах, морях, океанах).

Дальнейшие исследования в этой области проводились коллективами исследователей в разных странах: в СССР (А. Д. Архангельский, В. И. Вернадский, А. П. Виноградов, И. М. Губкин, Н. М. Страхов, А. А. Трофимук, А. М. Акрамходжаев, И. О. Брод, Н. Б. Вассоевич, В. В. Вебер, А. Ф. Добрянский, Н. А. Еременко, А. Э. Конторович, М. Ф. Мирчинк, С. Н. Неручев, К. Ф. Родионова, В. А. Соколов, В. А. Успенский и др.), в США (Ф. М. Ван-Тайл, К. Зобелл, У. Майншайн, А. Леворсен, Дж. Смит, Ф. Смит, Дж. Хант, Х. Хедберг, Э. Эванс, П. Эйбелсон, Дж. Эрдман и др.), во Франции (Б. Тиссоидр.), в Республики Германии (Р. Майнхольд, П. Мюллеридр, М. Тайхмюллер, Д. Вельте и др.), а также в Японии, Британии и др.

Убедительные доказательства биогенной природы нефте-материнского вещества были получены в результате детального изучения эволюции молекулярного состава углеводородов и их биохимических предшественников (прогениторов) в исходных организмах, в органическом веществе осадков и пород и в различных нефтях из залежей. Важным явилось обнаружение в составе черного золота хемофоссилий — весьма своеобразных, часто сложно построенных молекулярных структур явно биогенной природы, то есть унаследованных (целиком или в виде фрагментов) от органического вещества. Изучение распределения стабильных изотопов углерода (12C, 13C) в черного золота, органическом веществе пород и в организмах (А. П. Виноградов, Э. М. Галимов) также подтвердило неправомочность неорганических гипотез.

Было установлено, что — результат литогенеза. Она представляет собой жидкую (в своей основе) гидрофобную фазу продуктов фоссилизации (захоронения) органического вещества (керогена) в водно-осадочных отложениях.

Нефтеобразование — стадийный, весьма длительный (обычно много млн. лет) процесс, начинающийся ещё в живом веществе. Выделяется ряд стадий:

Осадконакопление — во время которого остатки живых организмов выпадают на дно водных бассейнов;

Биохимическая — процессы уплотнения, обезвоживания и биохимические процессы в условиях ограниченного доступа кислорода;

Протокатагенез — опускание пласта органических остатков на глубину до 1,5 — 2 км, при медленном подъёме температуры и давления;

Мезокатагенез или главная фаза нефтеобразования (ГФН) — опускание пласта органических остатков на глубину до 3 — 4 км, при подъёме температуры до 150 °C. При этом органические вещества подвергаются термокаталитической деструкции, в результате чего образуются битуминозные вещества, составляющие основную массу микронефти. Далее происходит отгонка черного золота за счёт перепада давления и эмиграционный вынос микронефти в песчаные пласты-коллекторы, а по ним в ловушки;

Апокатагенез керогена или главная фаза газообразования (ГФГ) — опускание пласта органических остатков на глубину более 4,5 км, при подъёме температуры до 180—250°С. При этом органическое вещество теряет нефтегенерирующий потенциал и реализовывает метаногенерирующий потенциал.

И. М. Губкин выделял также стадию разрушения нефтяных месторождений.

Считается, что основным исходным веществом черного золота обычно является планктон , обеспечивающий наибольшую биопродукцию в водоёмах и накопление в осадках органического вещества сапропелевого типа, характеризующегося высоким содержанием водорода (благодаря наличию в керогене алифатических и алициклических молекулярных структур). Породы, образовавшиеся из осадков, содержащих такого типа органическое вещество, потенциально нефтематеринские. Чаще всего это глины, реже — карбонатные и песчано-алевритовые породы, которые в процессе погружения достигают верхней половины зоны мезокатагенеза, где вступает в силу главный фактор нефтеобразования — длительный прогрев органического вещества при температуре от 50 °C и выше. Верхняя этой главной зоны нефтеобразования располагается на глубводорода,3—1,7 км (при среднем геотермическом градиенте 4°С/100 м) до 2,7—3 км (при градиенте 2°С/100 м) и фиксируется сменой буроугольной степени углефикации органического вещества каменноугольной. Главная фаза нефтеобразования приурочена к зоне, где углефикация органического вещества достигает степени, отвечающей углям марки Г. Эта фаза характеризуется значительным усилением термического и (или) термокаталитического распада полимерлипоидных и других компонентов керогена. Образуются в большом количестве нефтяные углеводороды, в том числе низкомолекулярные (C5-C15), почти отсутствовавшие на более ранних этапах превращения органического вещества. Эти углеводороды, дающие начало бензиновой и керосиновой фракциям черного золота, значительно увеличивают подвижность микронефти. Одновременно, вследствие снижения сорбционной ёмкости материнских пород, увеличения внутреннего давления в них и выделения воды в результате дегидратации глин, усиливается перемещение микронефти в ближайшие коллекторы. При миграции по коллекторам в ловушки нефть всегда поднимается, поэтому её максимальные запасы располагаются на несколько меньших глубинах, чем зона проявления главной фазы нефтеобразования, нижняя граница которой обычно соответствует зоне, где органическое вещество пород достигает степени углефикации, свойственной коксовым углям. В зависимости от интенсивности и длительности прогрева эта граница проходит на глубинах (имеются в виду максимальной глубины погружения за всю геологическую историю данной серии осадочных отложений) от 3—3,5 до 5—6 км.

Нефтяные запасы

Нефть относится к невозобновляемым ресурсам. Разведанные запасы нефти и нефтепродуктов составляют (на 2004) 210 млрд т (1200 млрд баррелей), неразведанные — оцениваются в 52—260 млрд т (300—1500 млрд баррелей ). Мировые разведанные запасы нефтепродуктов оценивались к началу 1973 года в 100 млрд т (570 млрд баррелей ) (данные по запасам нефтепродуктов, публикуемые за рубежом, возможно занижены). Таким образом, в прошлом разведанные запасы росли. В настоящее время, однако, они сокращаются.До середины 1970-х мировая добыча нефти удваивалась примерно каждое десятилетие, потом темпы её роста замедлились. В 1938 она составляла около 280 млн т, в 1950 около 550 млн т, в 1960 свыше 1 млрд т, а в 1970 свыше 2 млрд т. В 1973 году мировая добыча нефти превысила 2,8 млрд т. Мировая добыча нефти в 2005 году составила около 3,6 млрд т.. Всего с начала промышленной добычи (с конца 1850-х гг.) до конца 1973 года в мире было извлечено из недр 41 млрд т, из которых половина приходится на 1965—1973 год.Нефть занимает ведущее место в мировом топливно-энергетическом хозяйстве. Её доля в общем потреблении энергоресурсов непрерывно растет: 3 % в 1900, 5 % перед 1-й мировой войной 1914—1918, 17,5 % накануне 2-й мировой войны 1939—45, 24 % в 1950, 41,5 % в 1972, 48 % в 2004.Мировая добыча нефти в настоящее время (2006) составляет около 3,8 млрд т в год , или 30 млрд баррелей в год. Таким образом, при нынешних темпах потребления, разведанной черного золота хватит примерно на 40 лет, неразведанной — ещё на 10—50 лет. Также растёт и потребление черного золота — за последние 35 лет оно выросло с 20 до 30 млрд баррелей в год.Имеются также большие (3400 млрд баррелей) в нефтяных песках Канады и республики Венесуэлы. Этой черного золота при нынешних темпах потребления хватит на 110 лет. В настоящее время организации ещё не могут производить много черного золота из нефтяных песков, но ими ведутся разработки в этом направлении.

Примечания:

1. Оценочные запасы в миллиардах (10) бареллей. (

Происхождение нефти



Свойства нефти

Физические свойства

Средняя молекулярная масса

Плотность

лёгко й, 0,831-0,860 - средней , выше 0,860 - тяжёлой .

(обычно > фракционным составом

Температура кристаллизации парафина лёгких фракций

Вязкость фракционным составом нефти и её температурой

Удельная теплоёмкость 1,7-2,1 кДж/(кг∙К).

43,7-46,2 МДж/кг.

2,0-2,5

от до .

Температура вспышки

Химический состав

Общий состав

Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть - жидкие углеводороды (> 500 веществ или обычно 80-90 % по массе) и гетероатомные органические соединения (4-5 %), преимущественно сернистые (около 250 веществ), азотистые (>

Углеводородный состав

парафиновые нафтеновые (10-20, реже 35 %) и смешанного

Геология нефти

Заключающие нефть породы обладают сравнительно высокой пористостью и достаточной для её извлечения проницаемостью. Породы, допускающие свободное перемещение и накопление в них жидкостей и газов, называются коллекторами. Пористость коллекторов зависит от степени отсортированности зёрен, их формы и укладки, а также и от наличия цемента. Проницаемость определяется размером пор и их сообщаемостью. Главнейшими коллекторами нефти являются пески, песчаники, конгломераты, доломиты, известняки и другие хорошо проницаемые горные породы, заключённые среди таких слабопроницаемых пород, как глины или гипсы. При благоприятных условиях коллекторы могут быть трещиноватые метаморфические и изверженные породы, находящиеся в соседстве с осадочными нефтеносными породами.

Различного типа залежи нефти в гидравлически незамкнутых (1-3) и замкнутых (4-6) ловушках: 1 - пластовые сводовые нефтяные и газонефтяные залежи; 2 - массивная сводовая газонефтяная залежь; 3 - нефтяная залежь в выступе палеорельефа, первичного (напр., рифа) или вторичного (эрозионного); 4 - нефтяная залежь, экранированная стратиграфическим несогласием; 5 - нефтяная залежь в ловушке первичного (фациального, литологического) выклинивания коллектора; 6 - тектонически экранированная залежь нефти; а - нефть; б - газ; в - вода.

Часто нефтяная залежь занимает лишь часть коллектора и поэтому в зависимости от характера пористости и степени цементации породы (гетерогенности залежи) обнаруживается различная степень насыщенности нефтью отдельных её участков в пределах самой залежи.

Обычно нефть в залежи сопровождается водой, которая ограничивает залежь вниз по падению слоёв либо по всей её подошве. Кроме того, в каждой залежи нефти вместе с ней находится т. н. плёночная, или остаточная вода, обволакивающая частицы пород (песков) и стенки пор. В случае выклинивания пород коллектора или обрезания его сбросами, надвигами и т п. дизъюнктивными нарушениями залежь может либо целиком, либо частично ограничиваться слабопроницаемыми породами. В верхних частях нефтяной залежи иногда сосредоточивается газ (т. н. «газовая шапка»).

При добыче нефти скважинами не удаётся целиком извлечь всю нефть из залежи, значительное количество её остаётся в недрах земной коры. Для более полного извлечения нефти применяются специальные приёмы, из которых большое значение имеет метод заводнения (законтурного, внутриконтурного, очагового) . Нефть в залежи находится под давлением вследствие чего вскрытие залежи, особенно первыми скважинами, сопровождается риском газонефтепроявлений (очень редко фонтанными выбросами нефти).

Предложено несколько классификаций месторождений и залежей нефти как в России, так и за рубежом. Нефтяные месторождения различаются друг от друга по типу структурных форм и условиям их образования. Залежи нефти и газа различаются друг от друга по формам ловушек-коллекторов и по условиям образования в них скоплений нефти.

Сорта нефти

Введение сортности необходимо в связи с разностью состава нефти (содержания серы, различного содержания групп алканов, наличия примесей) в зависимости от месторождения. Стандартом для цен служит нефть сортов WTI и Light Sweet (для западного полушария и вообще ориентиром для других сортов нефти), а также Brent (для рынков Европы и стран ОПЕК).

Чтобы упростить экспорт были придуманы некие стандартные сорта нефти, связанные либо с основным месторождением, либо с группой месторождений. Для России это тяжёлая Urals и лёгкая нефть Siberian Light. В Великобритании - Brent, в Норвегии - Statfjord, в Ираке - Kirkuk, в США - Light Sweet и WTI. Часто бывает, что страна производит два сорта нефти - лёгкую и тяжёлую. Например в Иране это Iran Light и Iran Heavy.

Очистка нефти

Первый завод по очистке нефти был построен в России в 1745 году, в период правления Елизаветы Петровны, на Ухтинском нефтяном промысле. В Санкт-Петербурге и в Москве тогда пользовались свечами, а в малых городах - лучинами. Но уже тогда во многих церквях горели неугасаемые лампады. В них наливалось горное масло, которое было ничем иным, как смесью очищенной нефти с растительным маслом.

В конце XVIII столетия была изобретена керосиновая лампа. С появлением ламп возрос спрос на керосин. Очистка нефти - удаление из нефтепродуктов нежелательных компонентов, отрицательно влияющих на эксплуатационные свойства топлив и масел. Химическая очистка производится путём воздействия различных реагентов на удаляемые компоненты очищаемых продуктов. Наиболее простым способом является очистка 92-96 % серной кислотой или олеумом, применяемая для удаления непредельных и ароматических углеводородов. Физико-химическая очистка производится с помощью растворителей, избирательно удаляющих нежелательные компоненты из очищаемого продукта. Неполярные растворители (пропан и бутан) используются для удаления из остатков переработки нефти (гудронов) ароматических углеводородов (процесс деасфальтации). Полярные растворители (фенол и др.) применяются для удаления полициклических ароматических углеродов с короткими боковыми цепями, сернистых и азотистых соединений из масляных дистиллятов. При адсорбционной очистке из нефтепродуктов удаляются непредельные углеводороды, смолы, кислоты и др. Адсорбционную очистку осуществляют при контактировании нагретого воздуха с адсорбентами или фильтрацией продукта через зерна адсорбента. Каталитическая очистка - гидрогенизация в мягких условиях, применяемая для удаления сернистых и азотистых соединений.

Применение нефти.

Непосредственно сырая нефть практически не применяется (сырая нефть наряду с нерозином применяется для пескозащиты - закрепления барханных песков от выдувания ветром при строительстве ЛЭП и трубопроводов). Для получения из неё технически ценных продуктов, главным образом моторных топлив, растворителей, сырья для химической промышленности, её подвергают переработке. Нефть занимает ведущее место в мировом топливно-энергетическом балансе: доля её в общем потреблении энергоресурсов составляет 48 %. В перспективе эта доля будет уменьшаться вследствие возрастания применения атомной и иных видов энергии, а также увеличения стоимости и уменьшения добычи.

В связи с быстрым развитием в мире химической и нефтехимической промышленности, потребность в нефти увеличивается не только с целью повышения выработки топлив и масел, но и как источника ценного сырья для производства синтетических каучуков и волокон, пластмасс, ПАВ, моющих средств, пластификаторов, присадок, красителей, и др. (более 8 % от объёма мировой добычи). Среди получаемых из нефти исходных веществ для этих производств наибольшее применение нашли: парафиновые углеводороды - метан, этан, пропан, бутаны, пентаны, гексаны, а также высокомолекулярные (10-20 атомов углерода в молекуле); нафтеновые; ароматические углеводороды - бензол, толуол, ксилолы, этилбензол; олефиновые и диолефиновые - этилен, пропилен, бутадиен; ацетилен. Нефть уникальна именно комбинацией качеств: высокая плотность энергии (на тридцать процентов выше, чем у самых качественных углей), нефть легко транспортировать (по сравнению с газом или углём, например), наконец, из нефти легко получить массу вышеупомянутых продуктов. Истощение ресурсов нефти, рост цен на неё и др. причины вызвали интенсивный поиск заменителей жидких топлив.

Так же продукты нефтепереработки используются в панелях солнечных батарей. Солнечные панели могут помочь домовладельцам и бизнесменам использовать возобновляемые и энергии, то есть энергию солнечного света, но большинство панелей по-прежнему состоят из нефтяных смол, а пластмассовые детали из фотоэлектрических элементов. В скором времени это могут произойти изменения, поскольку многие компании начали разрабатывать новые био-смолы и биопластик, которые могли бы заменить компоненты батарей на нефтяной основе.

Как уже было сказано, в России производится нефть сорта Urals, которая получается смешением тяжелой, высокосернистой нефти Урала и Поволжья с легкой западносибирской нефтью.

Urals - сорт высокосернистой нефти (содержание серы около 1,3%), которая представляет собой смесь из нефти, добываемой в Ханты-Мансийском автономном округе и Татарстане. Основные производители черного золота Urals - это организации ««Роснефть»», «Лукойл», «Сургутнефтегаз», «нефтяная компания «Газпром нефть»», «ТНК-BP» и «группа Татнефть». Цена российской нефти определяется дисконтированием цены на Brent, поскольку российская нефть считается менее качественной ввиду высокого содержания серы, а также тяжёлых и циклических углеводородов.

В последнее время в Российской Федерации предпринят ряд шагов для того, чтобы повысить качество черного золота Urals путём исключения из него высокосернистой татарстанской нефти (в республике Татарстан планируется построить новые нефтеперерабатывающие мощности для того, чтобы из местной нефти делать бензин, а не пускать её в газопровод). Сама по себе Западно-Сибирская нефть приемлемого качества. За рубежом она известна под маркой Siberian Light.

Нефть марки Urals поставляется через Новороссийск и по системе газопроводов «Дружба».

Siberian Light - сорт нефти (содержание серы около 0.57%), добываемой в Ханты-Мансийском автономном округе. Основные производители черного золота Siberian Light - это фирмы ««Роснефть»», «Лукойл», «Сургутнефтегаз», «НК «Газпром нефть»», «ТНК-BP».

В отрасли теплоснабжения в качестве топлива для паровых котлов, котельных установок и промышленных печей нашел свое применение продукт переработки нефти – мазут. Мазу́т, жидкий продукт темно-коричневого цвета, остаток после выделения из нефти или продуктов ее вторичной переработки бензиновых, керосиновых и газойлевых фракций, выкипающих до 350-360°С.

Мазут обладает почти в полтора раза более высокой теплотой сгорания по сравнению с лучшими углями. Он занимает мало места при сгорании и не дает твердых остатков при горении. Замена твердых видов топлива мазутом на ТЭС, заводах и на железнодорожном и водном транспорте дает огромную экономию средств, способствует быстрому развитию основных отраслей промышленности и транспорта.

Заключение.

Таким образом, нефть относится к невозобновляемым ресурсам. Разведанные запасы нефти составляют (на 2004) 210 млрд т (1200 млрд баррелей), неразведанные - оцениваются в 52-260 млрд т (300-1500 млрд баррелей). Мировые разведанные запасы нефти оценивались к началу 1973 года в 100 млрд т (570 млрд баррелей). Таким образом, в прошлом разведанные запасы росли (также растёт и потребление нефти - за последние 35 лет оно выросло с 20 до 30 млрд баррелей в год). Однако, начиная с 1984 г., годовой объем мировой нефтедобычи превышает объём разведываемых запасов нефти.

Мировая добыча нефти в 2006 г. составляла около 3,8 млрд т в год, или 30 млрд баррелей в год. Таким образом, при нынешних темпах потребления, разведанной нефти хватит примерно на 40 лет, неразведанной - ещё на 10-50 лет.

Несмотря на существование таких прогнозов, правительство России планирует увеличение добычи нефти к 2030 году до 530 млн т в год. Также имеются большие запасы нефти (3400 млрд баррелей) в нефтяных песках Канады и Венесуэлы. Этой нефти при нынешних темпах потребления хватит на 110 лет. В настоящее время компании ещё не могут производить много нефти из нефтяных песков, но ими ведутся разработки в этом направлении.

Список использованной литературы.

1. http://ru.wikipedia.org – описание свойств нефти.

2. http://enc.fxeuroclub.ru – описание добычи нефти.

3. http://omrpublic.iea.org/supplysearch.asp - точные данные по добыче нефти.

4. Виноградов А. П. Галимов Э. М. «Изотопия углерода и проблема происхождения нефти.» - «Геохимия». 1970. № 3

Нефть: определение и описание.

Нефть - природная маслянистая горючая жидкость, состоящая из сложной смеси углеводородов и некоторых других органических соединений. По цвету нефть бывает красно-коричневого, иногда почти чёрного цвета, хотя иногда встречается и слабо окрашенная в жёлто-зелёный цвет и даже бесцветная нефть; имеет специфический запах, распространена в осадочных породах Земли. Сегодня нефть является одним из важнейших для человечества полезных ископаемых.

Нефть обнаруживается вместе с газообразными на глубинах от десятков метров до 5-6 км. Однако на глубинах свыше 4,5-5 км преобладают газовые и газоконденсатные залежи с незначительным количеством лёгких фракций. Максимальное число залежей нефти располагается на глубине 1-3 км. На малых глубинах и при естественных выходах на земную поверхность нефть преобразуется в густую мальту, полутвёрдый асфальт и др. образования - например, битуминозные пески и битумы.

Происхождение нефти

Нефтеобразование - стадийный, весьма длительный (обычно 50-350 млн лет) процесс, начинающийся ещё в живом веществе. Выделяется ряд стадий:

· Осадконакопление - во время которого остатки живых организмов выпадают на дно водных бассейнов;

· биохимическая - процессы уплотнения, обезвоживания и биохимические процессы в условиях ограниченного доступа кислорода;

· протокатагенез - опускание пласта органических остатков на глубину до 1,5-2 км, при медленном подъёме температуры и давления;

· мезокатагенез или главная фаза нефтеобразования (ГФН) - опускание пласта органических остатков на глубину до 3-4 км, при подъёме температуры до 150 °C. При этом органические вещества подвергаются термокаталитической деструкции, в результате чего образуются битуминозные вещества, составляющие основную массу микронефти. Далее происходит отгонка нефти за счёт перепада давления и эмиграционный вынос микронефти в песчаные пласты-коллекторы, а по ним в ловушки;

· апокатагенез керогена или главная фаза газообразования (ГФГ) - опускание пласта органических остатков на глубину более 4,5 км, при подъёме температуры до 180-250 °C. При этом органическое вещество теряет нефтегенерирующий потенциал и реализовывает метаногенерирующий потенциал.

И. М. Губкин выделял также стадию разрушения нефтяных местозарождений.

История добычи нефти исчисляется с 6-го тысячелетия до н.э. Наиболее древние промыслы известны на берегах Евфрата, в Керчи, в китайской провинции Сычу-ань. Первым способом добычи - сбор нефти с поверхности водоемов, который до нашей эры применялся в Мидии, Вавилонии и Сирии.

Свойства нефти

Физические свойства

Нефть - жидкость от светло-коричневого (почти бесцветная) до тёмно-бурого (почти чёрного) цвета.

Средняя молекулярная масса 220-300 г/моль (редко 450-470).

Плотность 0,65-1,05 (обычно 0,82-0,95) г/см³.

Нефть, плотность которой ниже 0,83, называется лёгко й, 0,831-0,860 - средней , выше 0,860 - тяжёлой .

Плотность нефти, как и других углеводородов, сильно зависит от температуры и давления. Она содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов (обычно >28 °C, реже ≥100 °C в случае тяжёлых не́фтей) и фракционным составом - выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом в определённых температурных пределах, как правило до 450-500 °C (выкипает ~ 80 % объёма пробы), реже 560-580 °C (90-95 %).

Температура кристаллизации от −60 до + 30 °C; зависит преимущественно от содержания в нефти парафина (чем его больше, тем температура кристаллизации выше) и лёгких фракций (чем их больше, тем эта температура ниже).

Вязкость изменяется в широких пределах (от 1,98 до 265,90 мм²/с для различных не́фтей, добываемых в России), определяется фракционным составом нефти и её температурой (чем она выше и больше количество лёгких фракций, тем ниже вязкость), а также содержанием смолисто-асфальтеновых веществ (чем их больше, тем вязкость выше).

Удельная теплоёмкость 1,7-2,1 кДж/(кг∙К).

Удельная теплота сгорания (низшая) 43,7-46,2 МДж/кг.

Диэлектрическая проницаемость 2,0-2,5

Электрическая проводимость [удельная] от до .

Нефть - легковоспламеняющаяся жидкость. Температура вспышки от −35 до +121 °C (зависит от фракционного состава и содержания в ней растворённых газов).

Нефть растворима в органических растворителях, в обычных условиях не растворима в воде, но может образовывать с ней стойкие эмульсии. В технологии для отделения от нефти воды и растворённой в ней соли проводят обезвоживание и обессоливание.

Химический состав

Общий состав

Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть - жидкие углеводороды (> 500 веществ или обычно 80-90 % по массе) и гетероатомные органические соединения (4-5 %), преимущественно сернистые (около 250 веществ), азотистые (> 30 веществ) и кислородные (около 85 веществ), а также металлоорганические соединения (в основном ванадиевые и никелевые). Остальные компоненты - растворённые углеводородные газы (C1-C4, от десятых долей до 4 %), вода (от следов до 10 %), минеральные соли (главным образом хлориды, 0,1-4000 мг/л и более), растворы солей органических кислот и др., механические примеси.

Углеводородный состав

В основном в нефти представлены парафиновые (обычно 30-35, реже 40-50 % по объёму) и нафтеновые (25-75 %). В меньшей степени - соединения ароматического ряда (10-20, реже 35 %) и смешанного , или гибридного, строения (например, парафино-нафтеновые, нафтено-ароматические).

Нефть - один из представителей класса жидких полезных ископаемых (помимо нее в него входит еще артезианская вода). Свое название она получила от персидского «нефт». Вместе с озокеритом и природным газом образует группу полезных ископаемых, называемых петролиты.

ЧТО ТАКОЕ НЕФТЬ С ТОЧКИ ЗРЕНИЯ ФИЗИКИ И ХИМИИ

Это жирная, маслянистая субстанция, цвет и плотность которой варьируется в зависимости от места добычи. Она может быть ярко зеленая или вишнево-красная, желтая, коричневая, черная, а в редких случаях - бесцветная. Текучесть нефти тоже сильно различается: одна будет как вода, другая - вязкой. Но что роднит между собой столь разные по физическим свойствам вещества, так это их химический состав, который всегда представляет собой сложную смесь углеводородов. За прочие свойства отвечают примеси - серы, азота и других соединений, из которых запах зависит преимущественно от наличия ароматических углеводородов и соединений серы.

Название главной составляющей нефти - «углеводороды» исчерпывающе говорит о ее составе. Это вещества, состоящие из атомов углерода и водорода, чья общая формула записывается как СхНу. Простейшим представителем этого ряда является метан CH4, присутствующий в любой нефти.

Элементарный состав среднестатистической нефти можно представить в процентном виде:

  • 84 % углерода
  • 14 % водорода
  • 1-3 % серы
  • <1 % кислорода
  • <1 % металлов
  • <1 % солей

ОСОБЕННОСТИ ЗАЛЕГАНИЯ НЕФТИ И ГАЗА

Нефть и газ обычно попутчики, то есть их находят вместе, но так бывает только при глубине залегания от 1 до 6 километров. Большинство месторождений находится именно в этом диапазоне, причем сочетания нефти и газа бывают разные. Если же глубина залегания меньше километра, то там находят одну нефть, а свыше 6 километров - только газ.

Пласт, где найдена нефть, называется коллектором. Обычно это пористые горные породы, которые можно уподобить твердой губке, которая набирает и удерживает нефть, газ, а также иные подвижные флюиды (к примеру, воду). Другим обязательным условием скопления нефти является наличие пласта-крышки, который препятствует дальнейшему движению флюида, из-за чего тот оказывается заперт в ловушке. Геологи ищут такие ловушки, которые потом зовутся месторождениями, но это не совсем верное название. Потому что нефть или газ зародились гораздо ниже, в слоях, находящихся под большим давлением. В верхние слои они попадают из-за того, что, будучи флюидами легкими, стремятся вверх. Их буквально выдавливает к поверхности земли.

ГДЕ И КОГДА ЗАРОДИЛАСЬ НЕФТЬ

Чтобы понять механизм образования нефти, нужно перенестись мысленно на миллионы лет назад. Согласно биогенной теории (она же - теория органического происхождения), начиная с каменноугольного периода (350 миллионов лет до н.э.) и вплоть до середины палеогена (50 млн. лет до н.э.) многочисленные области мелководья становились местами скопления останков органической жизни - погибающие микроорганизмы и водоросли падали на дно, образуя придонные слои органики. Очень медленно эти слои закрывались другими, неорганическими - наносами песка, к примеру, и опускались все ниже и ниже. Давление увеличивалось, закрывающие слои отвердевали, доступа кислорода к органике не было. Во тьме под действием давления и температуры происходила трансформация останков в простые углеводороды, часть из которых становилась газообразной, часть - жидкой и твердой.

Как только флюидам предоставлялась возможность вырваться из родительского пласта, они устремлялись вверх до тех пор, пока не оказывались в ловушке. Правда, подъем тоже занимал много времени. В ловушках флюиды обычно распределены следующим образом: сверху газ, потом нефть, а в самом низу - вода. Это связано с плотностью каждого из них. Если же на пути флюидов не встретилось непроницаемого пласта, они оказывались на поверхности, где происходило их разрушение и рассеяние. Естественные выходы нефти на поверхность обычно представляют собой озерца густой мальты и полужидкого асфальта, либо же она пропитывает песок, образуя так называемые битуминозные пески.

ЧЕЛОВЕЧЕСКАЯ ИСТОРИЯ НЕФТИ

Выход нефти на поверхность не мог не привлечь внимания древнего человека. О самых ранних этапах знакомства практически нет сведений, но в период хорошо развитой материальной культуры нефть использовалась в строительстве - об этом говорят данные из Ирака, где найдены свидетельства использования нефти для защиты домов от влаги. В Египте обнаружилась горючесть нефти, и ее использовали для освещения. Кроме того она нашла применение в мумификации и как герметик для лодок.

Будучи редкой, нефть стала ценным товаром уже в древности: вавилоняне торговали ею на Ближнем Востоке. Предполагается, что именно эта торговля породила множество городов и селений. Также не исключено, что нефть использовалась при создании одного из знаменитых «чудес света» - висячих садов Семирамиды. Там она пригодилась в качестве герметика, не пропускающего воду.

Китайцы же были первыми, кто не удовлетворился источниками, выходящими на поверхность. Именно они изобрели бурение скважин, используя для этого полые бамбуковые стволы с металлическим «буром» на конце. Поначалу они искали соленые источники для добычи соли, но потом нашли нефть и газ. С помощью последнего они и выпаривали соль - поджигая его. Об использовании нефти в Китае на тот период данных нет.

Еще одним древнейшим способом применения нефти стало лечение ею кожных заболеваний. О подобной практике у жителей Апшеронского полуострова говорится в заметках Марко Поло.

Впервые нефть на Руси упоминается только в XV веке. Историки нашли упоминания о сборе сырой нефти на реке Ухта, где она образовывала пленку на поверхности воды. Там ее собирали и делали из нее лекарство или источник света - обычно это была пропитка для факелов.

Новое применение нефти было найдено только в XIX веке, когда была изобретена керосиновая лампа. Ее разработал польский химик Игнатий Лукасевич. Не исключено, что он же был и изобретателем способа извлечения керосина из нефти. За несколько лет до того канадец Абрахам Геснер придумал способ получения керосина из угля, но получении из нефти оказалось более выгодным.

Керосин активно использовался для освещения, поэтому спрос на него рос постоянно. Поэтому нужно было решать вопрос ее добычи. Начало нефтедобывающей промышленности было положено в 1847 году в Баку, где была пробурена первая скважина, давшая нефть. Вскоре скважин стал так много, что Баку прозвали Черным городом.

Но те скважины еще бурились вручную. Первая же скважина, пробуренная паровой машиной, приводившей в движение буровой станок, появилась в России в 1864 году в Кубанской области. Два года спустя на Кудакинском месторождении закончили механическое бурение еще одной скважины.

В мире же начало промышленной нефтедобычи было положено в 1859 году Эдвином Дрейком, который 27 августа этого года пробурил первую в США нефтяную скважину - она имела глубину 21,2 метра и находилась в городке Тайтусвиль в штате Пенсильвания, где и раньше при бурении артезианских скважин часто находили нефть.

Бурение нефтяных скважин резко удешевило добычу нефти и привело к тому, что в скором времени этот продукт стал важнейшим для современной цивилизации. Одновременно это стало началом развития нефтяной отрасли.

ПРИМЕНЕНИЕ НЕФТИ

В настоящее время мы уже не используем нефть в чистом виде. Однако существует множество продуктов ее переработки, без которых немыслим наш мир. После первой перегонки получается пять видов топлива:

  • авиационный и автомобильный бензин
  • керосин
  • ракетное топливо
  • дизельное топливо
  • мазут

Фракция мазута - источник еще одного ряда продуктов дальнейшей перегонки:

  • битум
  • парафин
  • масла
  • котельное топливо

Дальнейшая судьба битума - соединение его с гравием и песком для получения асфальта. Еще один продукт нефти, который тоже используется для дорожных работ - это гудрон, представляющий собой концентрат остатков нефти после ее перегонки. Другой остаток, нефтяной кокс, используется при изготовлении ферросплавов и электродов.

Химическая промышленность использует простейшие углеводороды в качестве сырья для реакций, которые изменяют формулу соединений. В результате получаются пластмассы, резины, ткани, удобрения, красители, полиэтилен и полипропилен, а также множество средств бытовой химии.

Краткие сведения о нефти


К атегория:

Ремонт топливной аппаратуры автомобилей

Краткие сведения о нефти


Нефть - это жидкое ископаемое, горючее вещество. По внешнему виду нефть - вязкая маслянистая жидкость темно-коричневого, иногда буро-зеленого цвета со специфическим запахом.

Химический состав нефти неоднороден. Она представляет собой смесь большого количества разнообразных веществ: многочисленных углеводородов, сернистых, кислородных, азотистых и других соединений.

По составу нефти, добытые в разных географических районах и даже из разных пластов одного и того же месторождения, сильно отличаются одна от другой. Любая нефть состоит из следующих химических элементов (%): углерода 83-87, водорода Н -14, азота 0,3-2,3, серы 0,1-6, кислорода 0,1 -1,3 и небольшого количества различных металлов. В нефти содержатся углеводороды, которые делят на парафиновые (алканы), нафтеновые (цикланы) и ароматические (арены).



-

Кроме парафиновых углеводородов нормального строения существуют изомерные. Изомерное строение могут иметь углеводороды парафинового ряда с количеством атомов углерода 4 и более. Изомерные парафиновые углеводороды улучшают процесс сгорания бензинов, а нормальные парафиновые углеводороды повышают самовоспламеняемость дизельных топлив.

Углеводороды содержатся в нефти в значительных количествах. Присутствие легких нафтеновых углеводородов в бензине улучшает его свойства. Нафтеновые углеводороды обладают высокой химической стабильностью, т. е. способностью не вступать в химические реакции с другими веществами.

В автомобильных топливах не должно быть кислородных, азотистых и особенно сернистых соединений, которые вызывают сильную коррозию металлов.

Горное масло из . Думаете о продукте питания, или косметическом средстве? Житель Поднебесной подумал бы о другом.

Горным маслом в КНР называют нефть . Ши йоу, — примерно так звучит ее название в оригинале. В 21-ом веке нефть добывают повсюду.

Но, Китай – первая страна, где пробурили скважину. Произошло это еще в 347-ом году. Для бурения применили стволы бамбука.

Запасы нефти использовали в качестве топлива для выпаривания морской воды. Из нее китайцы получали .

Нефтью, так же, снабжали армию Поднебесной. наливали топливо в керамические горшки, поджигали и бросали во врагов.

Как видно, еще в начале нашей эры народ Китая знал и ценил свойства нефти. Но, китайцы затруднялись ответить, чем она является. К 21-му веку ученые детально разобрались в этом вопросе.

Что такое нефть

Нефть – черное золото . Известная всем фраза подчеркивает важность жидкости, ее весомую роль в истории.

Однако, более нефть с ничего не объединяет. Природа драгоценного металла неорганическая.

Же – полезное ископаемое предположительно органического происхождения.

От 80-ти до 90 процентов его состава приходятся на углеводороды. Еще около 9-18-ти процентов занимает простой водород.

На кислород, , и прочие неорганические составляющие приходиться не более 10%.

Однако, углеводороды, считающиеся следствием разложения органики, то есть остатков растений и , могут иметь и неорганическое происхождение.

С этим связаны теории, как нефть образуется . Их три. Подробности в отдельной главе. Пока же, продолжим рассмотрение топлива.

Оно жидкое и, действительно, маслянистое. В зависимости от состава, нефть и нефтепродукты бывают , бурыми, зеленоватыми, желтоватыми.

Встречается даже полностью прозрачное топливо. Такое имеется, к примеру, на Кавказе.

С экономической точки зрения нефть сегодня – это товар сырьевого , от цены которого зависит стоимость другой продукции.

Этому вопросу, так же, будет посвящена отдельная глава. С политической же точки зрения, жидкий энергоноситель – причина масштабных войн и локальных конфликтов.

Все хотят контролировать месторождения нефти, но не у всех они есть. Наличие залежей – еще не гарантия успеха и экономического благополучия.

Формула нефти может быть разная, а значит, будут разниться и свойства. От них зависит эффективность топлива, его качественные параметры, «запросы» на доработку.

Свойства нефти

Есть месторождения нефти текучей, словно вода, и смолистой. Дело в плотности энергоносителя.

Показатель тем выше, чем больше асфальтосмолистых веществ. Это высокомолекулярная органика на основе серы, водорода, кислорода и углерода.

Наличие асфальтосмол способствует образованию водонефтяных эмульсий, то есть смесей взаимнонерастворимых компонентов.

Промышленникам приходиться очищать углеводороды от воды, что увеличивает стоимость переработки. Вывод: смолистая нефть считается низкокачественной.

В смолистых углеводородах повышено содержание серы. Это еще один риск. Сера ускоряет коррозию аппаратуры, а она в нефтепроизводстве, как известно, не из дешевых.

Плотность нефти варьируется в пределах от 8-ми до 9,98 граммов на кубический сантиметр.

Нижняя планка – энергоносители, богатые светлыми фракциями. Именно из них получают бензиновые и дизельные дистилляты.

Получается, менее плотная, светлая нефть ценнее темной, маслянистой. Однако, пользу можно извлечь из обоих типов. Об этом поговорим в главе «Применение».

Светлые фракции нефти выкипают при температуре до 350-ти градусов Цельсия. Желательно 60-процентное присутствие легких компонентов.

Такова норма, к примеру, для производства дизельного топлива. Если содержание светлой фракции меньше, значит, много парафинов. Они негативно влияют на качество топлива.

На свойства нефти влияет и концентрация хлористых . Их наличие в составе – следствие загрязнения сырья при его добыче.

Приходиться проводить обессоливание. В противном случае, как и при избытке серы, увеличивается коррозия оборудования.

Она проявляется особенно «ярко», если ведется переработка нефти , насыщенной водой.

При высокой температуре она растворяет хлористые соли, а значит, образуется хлористый водород. Он-то и разъедает поверхности.

Вода часто входит в состав эмульсий нефти, — тех самых, что в избытке встречаются в смолистых сортах.

Но, встречается и энергоноситель, в котором влага содержится в чистом виде, отдельно.

Вода, кстати, является постоянной спутницей нефти. Если не входит в ее состав, то располагается рядом.

Образование нефти

Наличие рядом с нефтью воды – одно из свидетельств ее органического происхождения. Его, так же, называют биогенным.

Считается, что, энергоресурс формировался в водоемах. Необходимые условия – стоячая вода, ее высокая температура, обилие жизни, а значит, и смерти.

Отмирая, водоросли, рыбы, планктон, опускались на дно, где перегнивали. В стоячей воде мало кислорода, поэтому, процесс не завершался полностью.

При распаде органики выделялись газы. Меж биогенных материалов затесывались песок, вода.

Если водоем располагался среди песчаников и прочих пористых пород, илистые массы со дна просачивались сквозь них.

Встречая на пути непроницаемые , массы останавливались, растекаясь между контрастными по структуре слоями земной коры.

Теперь оставалось закрыть нефть непроницаемым слоем и сверху. Водоем со временем исчезал.

Подвижки литосферных плит, выветривание и прочих камней, содержащих , приводили к наносу и над нефтяными озерами.

Так сырье попадало в ловушку. Снизу и сверху – пласты , по бокам – вода.

Она ведь тоже просачивалась сквозь породы, почти не смешивалась с углеводородами, отходя в стороны от них.

Нефть залегает в ловушках антиклиналях. Они служат свидетельством тектонических процессов, которым местность когда-то подверглась.

Антиклинали – пласты пород, выгнутые вверх. Отложение земной коры формируются горизонтально.

Если появляются волны, значит, что-то давило снизу, а это – магма, прорывающаяся между литосферными плитами при их растрескивании, столкновении.

Получается, нефть стоит искать там, где некогда были моря, озера, и тектоническая активность.

Согласно биогенной теории происхождения энергоносителя, на его формирование требуются миллионы лет.

Некоторые ученые даже считают, что нефть – стадия преобразования антрацита, то есть, .

На его образование уходит примерно 400 000 000 лет. Что уж тогда говорить о жидких углеводорода.

В общем, если придерживаться органической теории, нефть – невосполнимый продукт, поскольку тратиться быстрее, чем образуется.

Вторая теория происхождения жидкого топлива – неорганическая, или минеральная.

Выдвинута в 1805-ом, а к 1877-му ее поддержал даже – приверженец биогенных взглядов на рождение нефти.

Суть гипотезы в формировании сырья на больших глубинах, где «царят» высокие температуры.

Если здесь есть вода и карбиды металлов, они вступят в реакцию. Так и образуется нефть .

К 2016 -му году проведена масса успешных экспериментов по неорганическому синтезу углеводородов.

Первые опыты состоялись в 1870-ых. Пример реакции: 2FeC + 3H 2 O = Fe 2 O 3 + H2COCOCH 4 .

Согласно минеральной теории, нефть может быстро восполняться, и человечество зря бьет в набаты по поводу ее дефицита.

Нужно лишь искать вновьобразовавшиеся месторождения. Со временем, тектонические подвижки, давление, проталкивают их ближе к поверхности.

Биогенная и минеральные теории образования нефти – соперники. Но, есть и третья гипотеза, стоящая особняком, мало кем поддерживаемая.

Выдвинута в конце 19-го века, может считаться подвидом неорганической. Говорится, что нефть сформировалась все из тех же минеральных веществ, но еще на начальном этапе жизни планеты.

На такую мысль натолкнуло наличие углеводородов в хвостах комет, . Сначала углеводороды находились в газовой оболочке Земли.

Но, она остывала, формировались горные породы. Они поглощали углеводороды, накапливали.

Если это правда, то нефть, как и в случае биогенного происхождения – ресурс невосполняемый.

Добыча нефти

Какая нефть в антиклиналях? Конечно, неочищенная. Углеводороды смешаны с газами, водой.

От их количества, температуры в слоях месторождения, зависит давление, образующееся в ловушке.

Оно может быть слабым. В этом случае, промышленникам приходиться устанавливать специальные насосы, чтобы выкачивать жидкость на поверхность.

Но, давление может и зашкаливать. Тогда, сырье самостоятельно устремляется к еще необорудованным скважинам, что создает проблемы.

Движение жидкости к скважине – первый этап добычи. Курс нефти от забоя до устья – вторая стадия.

Сбор сырья и его разделение на фракции – предфинальная стадия. Остается очистить нефть и транспортировать ее к переработчикам.

Применение нефти

При переработке нефти выделяется газ. Но, его не используют из-за несоответствия гостам.

Требуется затратить много сил и средств, чтобы ресурс можно было пускать по трубам.

Начни подавать газ из нефти в необработанном виде, это, в лучшем случае, закончиться копотью в помещениях с газовыми плитами.

Теперь, об используемых углеводородах нефти. Россия , как и другие страны, потребляет около 5-ти основных фракций.

Наиболее легкая – газолиновая. Она идет на производство бензинов, как авиационных, так и автомобильных.

Вторая фракция – лигроиновая, нужна для тракторного топлива. Керосиновые углеводороды закупают для пуска ракет и реактивных самолетов.

Дизельное топливо – это четвертая фракция, называемая газойлем. По сравнению с легкой фракцией, ее температура кипения вырастает минимум в 3,5 раза.

Пятая фракция нефти – мазут. Это самая тяжелая составляющая, состоящая из углеводородов с большим числом атомов.

Отделенный от них баррель нефти – ходовой товар. Но, польза есть и в мазуте. Из него получают соляровые и смазочные масла, вазелин и парафины.

Не стоит забывать, что нефть служит сырьем для производства многих синтетических тканей, резин, пластиков.

В общем, углеводородов в жизни человека гораздо больше, чем имеется в баке личного автомобиля.

Цена на нефть

Эталоном энергоносителя считается нефть «Брент» . Она добывается в Северном море, то есть, является российской.

Продукт – ни один вид топлива, а смесь нескольких. На 22-е июня 2016-го года стоимость нефти марки «Брент» составляет почти 51 рубль.

Для отечественной экономики это лучше установленных среднегодовых прогнозов в 40 рублей за баррель, то есть, примерно за 160 литров.

От цены на нефть, во многом, зависит иностранных валют и стоимость продукции, почти всей.

Даже то, что производится внутри страны, часто содержит импортные комплектующие, составляющие. Так что, «Брент» — главный России и ее главная надежда на светлое будущее.