Абсолютная и относительная погрешность. Абсолютная и относительная погрешности

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность :

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ : , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.


Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом :

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом : (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели :
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть - надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность таков а - чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий - это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2 :

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Ответ:

Пример 4:

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:


Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Пример 5:

Решение: Используем формулу:

В данном случае: , ,


Таким образом :

Ответ:

Пример 7:

Решение: Используем формулу:
В данном случае: , ,

Разность точного и приближенного значений величины называется погрешностью приближения (обозначается х),

т.е. х=х-а - погрешность приближения

откуда х=а + х,

т.е. истинное значение равно сумме приближенного значения и погрешности приближения.

Модуль разности точного и приближенного значений величины называется абсолютной погрешностью приближенного значения числа х.

т.е. -абсолютная погрешность приближения.

Запись х= а h означает, что истинное значение величины х заключено между границами, т.е. а - h х а + h

Пример 1. На предприятии 1284рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет 1300 -1284 = 16. При округлении до 1280 абсолютная погрешность состав­ляет 1284 - 1280 = 4.

Пример 2. Даны приближенные значения числа х= ; Какое из этих трех приближений является лучшим?

Решение:

Находим ; Лучшим приближением числа х является

Пример 3. Длина детали х (см) заключена в границах 33 х 34. Найти границу абсолютной погрешности измерения детали.

Решение: Примем за приближенное значение длины детали среднее арифметическое границ: а=(33+34)/2 = 33,5 (см).

Тогда граница абсолютной погрешности приближенного значения длины детали не превзойдет 0,5 (см). Величину можно найти и как полуразность верхней и нижней границ, т.е. = (34-33)/2 = 0,5 (см). Длина детали х , найденная с точностью до =0,5 (см), заключена между приближенными значениями числа х :

33,5-0,5 х 33,5+0,5;

х=33,5 0,5 (см).

Отношение абсолютной погрешности приближения к модулю приближенного значения величины называется относительной погрешностью приближения и обозначается .

Является относительной погрешностью приближения

Пример 1. При измерении длины L и диаметра проводника получили L =(10,0 0,1) м, d = (2,5 0,1) мм. Какое из этих измерений точнее?

Решение: Измерение длины проводника производилось с точностью до 0,1м=100мм, а измерение диаметра проводника – с точностью до 0,1мм.

При измерении длины проводника допускается абсолютная погрешность в 100мм на 10000мм, и, следовательно, допустимая абсолютная погрешность составляет

измеряемой величины.

При измерении диаметра допустимая абсолютная погрешность составляет

измеряемой величины. Следовательно, измерение длины проводника выполнено точнее.

Пример 2. Известно, что 0,111 является приближенным значением для Найти абсолютную и относительную погрешности этого приближения.

Решение: Здесь х= , а =0,111. Тогда = х-а = 1/9 – 0,111 = 1/9000-а.п.п,

-о.п.п

Пример 3. В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет 200-197 = 3. Относительная погрешность равна или, округленно, %.
В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относи­тельная) не превосходит некоторого числа.

Пример 4.

Продавец взвешивает арбуз на ча­шечных весах. В наборе гирь наименьшая- 50 г. Взвешивание дало 3600 г. Это число - приближенное. Точная масса арбуза неизвестна. Но абсолютная по­грешность не превышает 50 г. Относительная погреш­ность не превосходит %.

Комплексные числа.

Графическое изображение комплексных чисел.
Изображение комплексных чисел.

Комплексные числа записываются в виде: a+ bi . Здесь a и b действительные числа , а i мнимая единица, т.e. i 2 = –1.Число a называется абсциссой , a b – ординатой комплексного числа a+ bi. Комплексное число 0+ bi называется чисто мнимым числом .Запись bi означает то же самое, что и 0+ bi .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Сопряжённые комплексные числа имеют одинаковый модуль

Рассмотрим на плоскости декартову прямоугольную систему координат xOy . Каждому комплексному числу z = a + bi можно сопоставить точку с координатами (a;b) , и наоборот, каждой точке с координатами (c;d) можно сопоставить комплексное число w = c + di . Таким образом, между точками плоскости и множеством комплексных чисел устанавливается взаимно однозначное соответствие. Поэтому комплексные числа можно изображать как точки плоскости. Плоскость, на которой изображают комплексные числа, обычно называют комплексной плоскостью.

Пример. Изобразим на комплексной плоскости числа

Z 1 = 2 + i; z 2 = 3i; z 3 = -3 + 2i; z 4 = -1 – i.

в
а

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi ) ± (c + di ) = (a ± c ) + (b ± d )i , а умножение - по правилу (a + bi ) · (c + di ) = (ac bd ) + (ad + bc )i (здесь как раз используется, что i 2 = –1). Число = a bi называется комплексно-сопряженным к z = a + bi . Равенство z · = a 2 + b 2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

Например,

Задачи для самостоятельного решения

При измерении длин отрезков и площадей фигур, при взвешивании тел и других измерениях получаются числа, выражающие эти величины.

Ввиду погрешностей измерения полученные числа являются приближёнными значениями измеряемой величины.

У каждого из вас есть линейка и карандаш. Давайте попытаемся измерить длину карандаша.

Из рисунка видно, что длина карандаша чуть меньше 10 см. Если бы на этой линейке не было миллиметровых делений, то мы бы сказали, что длина карандаша равна 10 см. Но это было бы не совсем точное измерение.

Такую неточность называют погрешностью измерения .

В нашем случае, на линейке есть миллиметровые деления, поэтому мы можем измерить длину карандаша с более высокой точностью – 9,8 см.

Приближённое значение отличается от точного значения в этом случае на 0,2 см. Чтобы узнать, на сколько приближённое значение отличается от точного, надо из большего числа вычесть меньшее, т.е. найти модуль разности точного и приближённого значений. Этот модуль разности называют абсолютной погрешностью .


Определение :

Абсолютной погрешностью приближённого значения называют модуль разности точного и приближённого значений.

Значение абсолютной погрешности не всегда можно найти. Но обычно известна её оценка сверху – например, при измерении длины отрезка линейкой с сантиметровыми делениями абсолютная погрешность измерения не превышает 1 сантиметра, а при взвешивании на весах с гирями 100 грамм, 200 грамм, 500 грамм и 1 килограмм абсолютная погрешность взвешивания не превышает ста грамм.

Посмотрите, на слайде изображён отрезок CD .


Его длина расположена между цифрами 7 см и 8 см. Понятно, что 7 см – это приближённое значение длины отрезка CD с недостатком , а 8 см – это приближённое значение длины отрезка CD с избытком .

Если истинную длину отрезка обозначить за х , то получим, что длина отрезка CD удовлетворяет неравенству:

Пусть истинное значение измеряемой величины равно.

Измерение дало результат.

Тогда разность – это абсолютная погрешность измерения.

Число называют границей абсолютной погрешности измерения, если выполняется неравенство:

Принято писать

Точность приближённого значения зависит от многих причин. Если приближённое значение получено в процессе измерения, то, конечно же, его точность будет зависеть от прибора , с помощью которого выполнялось это измерение.

Вот, например , комнатный термометр. На нём деления нанесены через один градус. Это даёт возможность измерять температуру воздуха с точностью до 1 градуса. А на весах, у которых цена деления шкалы 20 г, можно взвешивать с точностью до 20 г. Или, к примеру, ещё, механические часы. Цена одного деления, которых 1 мин. По ним можно сказать время с точностью до 1 минуты.


Для оценки качества измерения можно использовать относительную погрешность приближённого значения .

Определение:

Относительной погрешностью приближённого значения называется отношение абсолютной погрешности к модулю приближённого значения.

Относительную погрешность принято выражать в процентах. В тех случаях, когда абсолютная погрешность приближенного значения неизвестна, а известна лишь его точность, ограничиваются оценкой относительной погрешности.

Например: при измерении (в сантиметрах) длины книжной полки и толщины компакт-диска получили следующие результаты:


Чем меньше точнее .

Итоги:

Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Число называют границей абсолютной погрешности измерения , если выполняется неравенство:

Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения.

Чем меньше относительная погрешность измерения, тем оно

учитель математики МОУ «Упшинская ООШ»

Оршанского района Республики Марий Эл

(К учебнику Ю.А.Макарычева Алгебра 8)

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Найдем по графику значение у при х = 1,5

у=х 2

у ≈2,3

Найдем значение у при х = 1,5 по формуле

у =1,5 2 = 2,25

Приближенное значение отличается от точного на 2,3 – 2,25 = 0,05

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Найдем по графику значение у при х = 1,8

у=х 2

у ≈3,2

Найдем значение у при х = 1,8 по формуле

у =1,8 2 = 3,24

Приближенное значение отличается от точного на 3,24 – 3,2 = 0,04

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

х

1,5

Точное значение у

(по формуле)

1,8

2,25

Приближенное значение у (по графику)

3,24

2,3

3,2

у=х 2

Определение. Абсолютной погрешностью

у = 2,3 А.П. = |2,25 – 2,3| = |- 0,0 5| = 0,05

у = 3,2 А.П. = |3,24 – 3,2| = | 0,0 4| = 0,04

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью

Пример 1 пуд равна 16,38. Округлите это значение до целых и найдите абсолютную погрешность приближенного значения.

Решение. 1 6 ,38 ≈ 16

16,38 – точное значение;

16 – приближенное значение.

А.П. = | 16,38 16 | = |0 ,38 | = 0, 38

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 2 верста равна 1067 м. Округлите это значение до десятков и найдите абсолютную погрешность приближенного значения.

Решение. 10 6 7 ≈ 1070

1067 – точное значение;

1070 – приближенное значение.

А.П. = | 1067 1070 | = |-3| = 3

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 3 сажень равна 2,13 м. Округлите это значение до десятых и найдите абсолютную погрешность приближенного значения.

Решение. 2, 1 3 ≈ 2,1

2,13 – точное значение;

2,1 – приближенное значение.

А.П. = | 2,13 2,1 | = | 0,03 | = 0,03

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Пример 4 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите абсолютную погрешность приближенного значения.

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Всегда ли можно найти абсолютную погрешность?

АВ ≈ 5,3 см

Найдем длину отрезка АВ

Точного значения длины отрезка АВ мы определить не можем, поэтому и абсолютную погрешность приближенного значения найти невозможно.

В подобных случаях в качестве погрешности указывают такое число, больше которого абсолютная погрешность быть не может.

В нашем примере в качестве такого числа можно взять число 0,1.

ПОЧЕМУ? Цена деления линейки равна 0,1 см и поэтому абсолютная погрешность приближенного значения 5,3 не больше 0,1.

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в санти-метрах) с точностью до 0,1

АВ ≈ 5,3 см

t ≈ 28 0 с точностью до 1

t ≈ 14 0 с точностью до 2

Определите точность приближенных значений величин, полученных при измерении приборами, изображенными на рисунках 1- 4

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в сантиметрах) с точностью до 0,1

АВ ≈ 5,3 см

Если х ≈ а и абсолютная погрешность приближенного значения не превосходит некоторого числа h , то число а называют приближенным значением х с точностью до h

х а с точностью до h

х = а ± h

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

АВ ≈ 5,3 см

с точностью до 0,1

t ≈ 28 0 с точностью до 1

с точностью до 2

Определение . Относительной погрешностью (точностью) приближенного значения называется отношение абсолютной погрешности (точности) к модулю приближенного значения

Для оценки качества измерения можно использовать определения относительной погрешности и относительной точности

l = 100,0 ± 0,1

b = 0,4 ± 0,1

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Определение .

Пример 5 . Старинная русская мера массы пуд равна 16,38. Округлите это значение до целых и найдите относительную погрешность приближенного значения.

Решение. 1 6 ,38 ≈ 16

16,38 – точное значение;

16 – приближенное значение.

А.П. = | 16,38 16 | = |0 ,38 | = 0, 38

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Определение . Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения

Пример 6 . Старинная русская мера длины верста равна 1067 м. Округлите это значение до десятков и найдите относительную погрешность приближенного значения.

Решение. 10 6 7 ≈ 1070

1067 – точное значение;

1070 – приближенное значение.

А.П. = | 1067 1070 | = |-3| = 3

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Пример 7 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите относительную погрешность приближенного значения.

Величиной называется то, что может быть в определенных единицах выражено числом. Например, длина, площадь, объем – это величины. Значение величины, в истинности которого мы не сомневаемся, называется точным (в дальнейшем х - точное число ). Но обычно на практике, отыскивая значение какой-либо величины, получают лишь ее приближенное значение (в дальнейшем а - приближенное число ). Например, при измерении физических величин с помощью измерительных приборов.

Модуль разности точного и приближенного значений величины называется абсолютной погрешностью приближения Предельной абсолютной погрешностью приближения или границей погрешности или оценкой абсолютной погрешности называется число . Таких оценок может быть бесконечное число. Лучшей оценкой погрешности является наименьшая оценка.

Краткая запись точного числа: …

Отношение абсолютной погрешности приближения к модулю точного значения величины называется относительной погрешностью . На практике используется Для предельной относительной погрешности (оценки относительной погрешности): . Относительная погрешность обычно выражается в %.

В дальнейшем слово оценка опускается.

ПРИМЕР. Найти абсолютную и относительную погрешность приближения а=3,14 для х=π .

Известно, что 3,14 π .

Отсюда следует, что, т.е.

Если учесть, что 3,14 π то получим лучшую оценку

Цифра в десятичной записи приближенного значения величины х называется верной в широком смысле , если абсолютная погрешность приближения не превосходит единицы того разряда r , которому принадлежит эта цифра (Нулевым разрядом считается разряд единиц, десятичные цифры считаются отрицательными разрядами). Существует еще понятие верной цифры в узком смысле : . В дальнейшем будем рассматривать верные цифры в широком смысле. Остальные цифры числа называются сомнительными . Значащими цифрами числа, записанного в десятичной форме, называются все верные цифры числа, начиная с первой слева, отличной от 0. Все нули слева являются незначащими. По количеству значащих цифр можно легко оценить абсолютную погрешность приближенного числа. За оценку абсолютной погрешности можно взять 0,5 разряда, следующего за последней значащей цифрой. Предельную относительную погрешность можно принять равной дроби, числитель которой 1, а знаменатель – удвоенное целое число, записанное при помощи всех значащих цифр данного числа.

ПРИМЕР. а=0,065;

ЗАДАЧА 1.1. Объем помещения V определен с предельной относительной погрешностью δ Сколько значащих цифр в V ?

ЗАДАЧА 1.3. Округлите сомнительные цифры приближенного числа а δ

Задание 1.2.

Округлите сомнительные цифры приближенного числа а , если известна относительная погрешность δ

а=694,6 ,

В теории приближенных вычислений рассматриваются два вида задач: прямая и обратная.

Прямая задача. Выполнить действия над приближенными числами при заданных погрешностях приближений. Оценить погрешность полученного результата.

Обратная задача. Выполнить действия над приближенными числами при заданной погрешности результата. Установить, какими должны быть погрешности исходных приближений.

Правила подсчета цифр для прямой задачи

1. В алгебраической сумме приближенных значений, в записи которых все цифры верны, следует оставлять столько десятичных знаков, сколько их имеет слагаемое с наименьшим числом десятичных знаков. Слагаемые с большим числом десятичных знаков следует предварительно округлить, оставив на один десятичный знак больше, чем у выделенного слагаемого.

2,3+4,681=2,3+4,68=6,98≈7,0

2. В произведении приближенных значений следует оставлять столько значащих цифр, сколько их имеет сомножитель с наименьшим количеством значащих цифр. Сомножители с большим числом значащих цифр следует предварительно округлить, оставив на одну значащую цифру больше, чем у выделенного сомножителя. Аналогично для деления.

23 ∙ 1,056 ≈ 23 ∙ 1,06 =24,38 ≈ 24; 10,1 ∙ 0,5 ≈ 5

3. При возведении приближенного числа в степень или при извлечении корня в результате следует оставлять столько значащих цифр, сколько их имеет основание степени или подкоренное число.

4. При выполнении последовательного ряда действий над приближенными числами в промежуточных результатах следует оставлять на одну цифру больше, чем рекомендуют предыдущие правила. В окончательном результате эта цифра отбрасывается по правилам округления.

Правило подсчета цифр для обратной задачи

Для того, чтобы в результате ряда промежуточных действий получить число с n верными цифрами, исходные данные следует брать с таким числом верных цифр, которые согласно предыдущим правилам обеспечивают n+1 верную цифру в результате. Окончательный результат округлить до n цифр.

Метод границ аргументов (МГА)

ДАНО: - монотонная функция;

Приближенные значения аргументов и оценки погрешностей.

В результате оставляют верные цифры плюс 1 сомнительную (в соответствии с полученной погрешностью).

Метод границ погрешностей.

Оценка погрешности результата вычисляется как функция погрешностей исходных данных. Вывод формулы осуществляется по соотношениям, приведенным в таблице.

Таблица 1.1.

Принцип равных влияний.

Принцип заключается в том, что оценки погрешностей аргументов одинаково влияют на погрешность результата, т.е. считаются равными.

Замечания.

1. Правило четной цифры : если при округлении первая из отброшенных цифр =5, и за ней не следуют отличные от нуля цифры, то последняя цифра усиливается, если она нечетная, и остается без изменения, если она четная.

2. Приближенное значение а величины х называется недостаточным , если x>a и избыточным , если x

3. Нули справа будут значащими, если они являются верными цифрами.

4. При вычислениях нижнюю границу можно округлять в сторону уменьшения, а верхнюю – в сторону увеличения.

5. Дополнительная цифра к промежуточному результату может быть добавлена только в том случае, если в арифметическом действии участвуют исходные данные.

ЗАДАЧА 1.4.

Стороны прямоугольника Вычислить диагональ прямоугольника по формуле:

2 ) Правило подсчета цифр

Искомый результат должен содержать одну значащую цифру, следовательно, при выполнении арифметических действий должно быть получено число с двумя значащими цифрами. Последним действием является извлечение корня, значит, значение подкоренного выражения также должно иметь две значащие цифры. В нашем случае это двузначное число, т.е. результат сложения не должен иметь десятичных знаков, а соответственно и слагаемые. Но слагаемыми являются квадраты исходных данных. Поэтому исходные данные следует брать без десятичных знаков.

Имея дело в вычислениях с бесконечными десятичными дробями, приходится для удобства выполнять приближение этих чисел, т. е. округлять их. Приблизительные числа получаются также при различных измерениях.

Бывает полезно узнать, как сильно приближенное значение числа отличается от его точного значения. Понятно, что чем это различие меньше, тем лучше, тем точнее выполнено измерение или вычисление.

Для определения точности измерений (вычислений) вводят такое понятие как погрешность приближения . По-другому его называют абсолютной погрешностью . Погрешность приближения представляет собой взятую по модулю разность между точным значением числа и его приближенным значением.

Если a - это точное значение числа, а b - его приближенное значение, то погрешность приближения определяется по формуле |a – b|.

Допустим, что в результате измерений было получено число 1,5. Однако в результате вычисления по формуле точное значение этого числа равно 1,552. В таком случае погрешность приближения будет равна |1,552 – 1,5| = 0,052.

В случае с бесконечными дробями погрешность приближения определяется по той же формуле. На месте точного числа записывается сама бесконечная дробь. Например, |π – 3,14| = |3,14159... – 3,14| = 0,00159... . Здесь получается, что погрешность приближения выражена иррациональным числом.

Как известно, приближение может выполняться как по недостатку, так и по избытку. То же число π при приближении по недостатку с точностью до 0,01 равно 3,14, а при приближении по избытку с точностью до 0,01 равно 3,15. Причина, по которой в вычислениях используется его приближение по недостатку, заключается в применении правил округления. Согласно этим правилам, если первая отбрасываемая цифра равна пяти или больше пяти, то выполняется приближение по избытку. Если меньше пяти, то по недостатку. Так как третьей цифрой после запятой у числа π является 1, то поэтому при приближении с точностью до 0,01 оно выполняется по недостатку.

Действительно, если вычислить погрешности приближения до 0,01 числа π по недостатку и по избытку, то получим:

|3,14159... – 3,14| = 0,00159...
|3,14159... – 3,15| = 0,0084...

Так как 0,00159...

Говоря о погрешности приближения, также как и в случае с самим приближением (по избытку или недостатку), указывают его точность. Так в приводимом выше примере с числом π следует сказать, что оно равно числу 3,14 с точностью до 0,01. Ведь модуль разности между самим числом и его приближенным значением не превышает 0,01 (0,00159... ≤ 0,01).

Точно также π равно 3,15 с точностью до 0,01, так как 0,0084... ≤ 0,01. Однако если говорить о большей точности, например до 0,005, то мы можем сказать, что π равно 3,14 с точностью до 0,005 (так как 0,00159... ≤ 0,005). Сказать же это по отношению к приближению 3,15 мы не можем (так как 0,0084... > 0,005).

Абсолютная и относительная погрешность числа.

В качестве характеристик точности приближенных величин любого происхождения вводятся понятия абсолютной и относительной погрешности этих величин.

Обозначим через а приближение к точному числу А.

Определени . Величина называется погрешностью приближенного числаа.

Определение . Абсолютной погрешностью приближенного числа а называется величина
.

Практически точное число А обычно неизвестно, но мы всегда можем указать границы, в которых изменяется абсолютная погрешность.

Определение . Предельной абсолютной погрешностью приближенного числа а называется наименьшая из верхних границ для величины , которую можно найти при данном способе получения числаа.

На практике в качестве выбирают одну из верхних границ для , достаточно близкую к наименьшей.

Поскольку
, то
. Иногда пишут:
.

Абсолютная погрешность - это разница между результатом измерения

и истинным (действительным) значением измеряемой величины.

Абсолютная погрешность и предельная абсолютная погрешность не достаточны для характеристики точности измерения или вычисления. Качественно более существенна величина относительной погрешности.

Определение . Относительной погрешностью приближенного числа а назовем величину:

Определение . Предельной относительной погрешностью приближенного числа а назовем величину

Так как
.

Таким образом, относительная погрешность определяет фактически величину абсолютной погрешности, приходящейся на единицу измеряемого или вычисляемого приближенного числа а.

Пример. Округляя точные числа А до трех значащих цифр, определить

абсолютную Dи относительную δ погрешности полученных приближенных

Дано:

Найти:

∆-абсолютная погрешность

δ –относительная погрешность

Решение:

=|-13.327-(-13.3)|=0.027

,a0

*100%=0.203%

Ответ: =0,027; δ=0.203%

2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).

Верные знаки числа.

Определение . Значащей цифрой приближенного числа а называется всякая цифра, отличная от нуля, и нуль, если он расположен между значащими цифрами или является представителем сохраненного десятичного разряда.

Например, в числе 0,00507 =
имеем 3 значащие цифры, а в числе 0,005070=
значащие цифры, т.е. нуль справа, сохраняя десятичный разряд, является значащим.

Условимся впредь нули справа записывать, если только они являются значащими. Тогда, иначе говоря,

значащими являются все цифры числа а, кроме нулей слева.

В десятичной системе счисления всякое число а может быть представлено в виде конечной или бесконечной суммы (десятичной дроби):

где
,
- первая значащая цифра, m - целое число, называемое старшим десятичным разрядом числа а.

Например, 518,3 =, m=2.

Пользуясь записью , введем понятие о верных десятичных знаках (в значащих цифрах) приближенно-

го числа.

Определение . Говорят, что в приближенном числе а формы n - первых значащих цифр ,

где i= m, m-1,..., m-n+1 являются верными, если абсолютная погрешность этого числа не превышает половины единицы разряда, выражаемого n-й значащей цифрой:

В противном случае последняя цифра
называется сомнительной.

При записи приближенного числа без указания его погрешности требуют, чтобы все записанные цифры

были верными. Это требование соблюдено во всех математических таблицах.

Термин “n верных знаков” характеризует лишь степень точности приближенного числа и его не следует понимать так, что n первых значащих цифр приближенного числа а совпадает с соответствующими цифрами точного числа А. Например, у чисел А=10, а=9,997 все значащие цифры различны, но число а имеет 3 верных значащих цифры. Действительно, здесь m=0 и n=3 (находим подбором).