Многочлены - Методическое пособие. Задачи для самостоятельного решения

Определение 3.3. Одночленом называют выражение, представляющее собой произведение чисел, переменных и степеней с натуральным показателем.

Например, каждое из выражений ,
,
является одночленом.

Говорят, что одночлен имеет стандартный вид , если он содержит только один числовой множитель, стоящий на первом месте, а каждое произведение одинаковых переменных в нем представлено степенью. Числовой множитель одночлена, записного в стандартном виде, называют коэффициентом одночлена . Степенью одночлена называют сумму показателей степеней всех его переменных.

Определение 3.4. Многочленом называют сумму одночленов. Одночлены, из которых составлен многочлен, называют членами многочлена .

Подобные слагаемые – одночлены в многочлене – называют подобными членами многочлена .

Определение 3.5. Многочленом стандартного вида называют многочлен, в котором все слагаемые записаны в стандартном виде и приведены подобные члены. Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов.

Например, – многочлен стандартного вида четвертой степени.

Действия над одночленами и многочленами

Сумму и разность многочленов можно преобразовать в многочлен стандартного вида. При сложении двух многочленов записываются все их члены и приводятся подобные члены. При вычитании знаки всех членов вычитаемого многочлена меняются на противоположные.

Например:

Члены многочлена можно разбивать на группы и заключать в скобки. Поскольку это тождественное преобразование, обратное раскрытию скобок, то устанавливается следующее правило заключения в скобки : если перед скобками ставится знак «плюс», то все члены, заключаемые в скобки, записывают с их знаками; если перед скобками ставится знак «минус», то все члены, заключаемые в скобки, записывают с противоположными знаками.

Например,

Правило умножения многочлена на многочлен : чтобы умножить многочлен на многочлен, достаточно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.

Например,

Определение 3.6. Многочленом от одной переменной степени называют выражение вида

где
– любые числа, которые называют коэффициентами многочлена , причем
,– целое неотрицательное число.

Если
, то коэффициентназываютстаршим коэффициентом многочлена
, одночлен
– его старшим членом , коэффициент свободным членом .

Если вместо переменной в многочлен
подставить действительное число, то в результате получится действительное число
, которое называютзначением многочлена
при
.

Определение 3.7. Число называют корнем многочлена
, если
.

Рассмотрим деление многочлена на многочлен, где
и- натуральные числа. Деление возможно, если степень многочлена-делимого
не меньше степени многочлена-делителя
, то есть
.

Разделить многочлен
на многочлен
,
,– значит найти два таких многочлена
и
, чтобы

При этом многочлен
степени
называютмногочленом-частным ,
остатком ,
.

Замечание 3.2. Если делитель
не нуль-многочлен, то деление
на
,
, всегда выполнимо, а частное и остаток определяются однозначно.

Замечание 3.3. В случае, когда
при всех , то есть

говорят, что многочлен
нацело делится
(или делится ) на многочлен
.

Деление многочленов выполняется аналогично делению многозначных чисел: сначала старший член многочлена-делимого делят на старший член многочлена-делителя, затем частное от деления этих членов, которое будет старшим членом многочлена-частного, умножают на многочлен-делитель и полученное произведение вычитают из многочлена-делимого. В результате получают многочлен – первый остаток, который делят на многочлен-делитель аналогичным образом и находят второй член многочлена-частного. Этот процесс продолжают до тех пор, пока получится нулевой остаток или степень многочлена остатка будет меньше степени многочлена-делителя.

При делении многочлена на двучлен можно воспользоваться схемой Горнера.

Схема Горнера

Пусть требуется разделить многочлен

на двучлен
. Обозначим частное от деления как многочлен

а остаток – . Значение, коэффициенты многочленов
,
и остатокзапишем в следующей форме:

В этой схеме каждый из коэффициентов
,
,
, …,получается из предыдущего числа нижней строки умножением на числои прибавлением к полученному результату соответствующего числа верхней строки, стоящего над искомым коэффициентом. Если какая-либо степеньв многочлене отсутствует, то соответствующий коэффициент равен нулю. Определив коэффициенты по приведенной схеме, записываем частное

и результат деления, если
,

или ,

если
,

Теорема 3.1. Для того чтобы несократимая дробь (

,

) была корнем многочлена
с целыми коэффициентами, необходимо, чтобы числобыло делителем свободного члена, а число- делителем старшего коэффициента.

Теорема 3.2. (Теорема Безу ) Остаток от деления многочлена
на двучлен
равен значению многочлена
при
, то есть
.

При делении многочлена
на двучлен
имеем равенство

Оно справедливо, в частности, при
, то есть
.

Пример 3.2. Разделить на
.

Решение. Применим схему Горнера:

Следовательно,

Пример 3.3. Разделить на
.

Решение. Применим схему Горнера:

Следовательно,

,

Пример 3.4. Разделить на
.

Решение.

В итоге получаем

Пример 3.5. Разделить
на
.

Решение. Проведем деление многочленов столбиком:

Тогда получаем

.

Иногда бывает полезным представление многочлена в виде равного ему произведения двух или нескольких многочленов. Такое тождественное преобразование называют разложением многочлена на множители . Рассмотрим основные способы такого разложения.

Вынесение общего множителя за скобки. Для того чтобы разложить многочлен на множители способом вынесения общего множителя за скобки, необходимо:

1) найти общий множитель. Для этого, если все коэффициенты многочлена – целые числа, в качестве коэффициента общего множителя рассматривают наибольший по модулю общий делитель всех коэффициентов многочлена, а каждую переменную, входящую во все члены многочлена, берут с наибольшем показателем, который она имеет в данном многочлене;

2) найти частное от деления данного многочлена на общий множитель;

3) записать произведение общего множителя и полученного частного.

Группировка членов. При разложении многочлена на множители способом группировки его члены разбиваются на две или более групп с таким расчетом, чтобы каждую из них можно было преобразовать в произведение, и полученные произведения имели бы общий множитель. После этого применяется способ вынесения за скобки общего множителя вновь преобразованных членов.

Применение формул сокращенного умножения. В тех случаях, когда многочлен, подлежащий разложению на множители, имеет вид правой части какой-либо формулы сокращенного умножения, его разложение на множители достигается применением соответствующей формулы, записанной в другом порядке.

Пусть

, тогда справедливы следующиеформулы сокращенного умножения:

Для

:

Если нечетное (

):

Бином Ньютона:

где
– число сочетаний изпо.

Введение новых вспомогательных членов. Данный способ заключается в том, что многочлен заменяется другим многочленом, тождественно равным ему, но содержащим другое число членов, путем введения двух противоположных членов или замены какого-либо члена тождественно равной ему суммой подобных одночленов. Замена производится с таким расчетом, чтобы к полученному многочлену можно было применить способ группировки членов.

Пример 3.6. .

Решение. Все члены многочлена содержат общий множитель
. Следовательно,.

Ответ: .

Пример 3.7.

Решение. Группируем отдельно члены, содержащие коэффициент , и члены, содержащие. Вынося за скобки общие множители групп, получаем:

.

Ответ:
.

Пример 3.8. Разложить на множители многочлен
.

Решение. Используя соответствующую формулу сокращенного умножения, получаем:

Ответ: .

Пример 3.9. Разложить на множители многочлен
.

Решение. Используя способ группировки и соответствующую формулу сокращенного умножения, получаем:

.

Ответ: .

Пример 3.10. Разложить на множители многочлен
.

Решение. Заменим на
, сгруппируем члены, применим формулы сокращенного умножения:

.

Ответ:
.

Пример 3.11. Разложить на множители многочлен

Решение. Так как ,
,
, то

Тема урока:

Многочлены от одной переменной.

11 класс

Учитель математики

Казанцева М. В.

МБОУ «СОШ №110»


Рассмотрим многочлены:

2 – 11х +12

14х 5 + 3х 2 – 6х+7

х 6 + 11

Эти многочлены записаны в стандартном виде.

Многочлен стандартного вида не содержит подобных членов и записан в порядке убывания степеней его членов.


Р(х)= а п х п п–1 х п–1 п–2 х п–2 +

+… + а 2 х 2 + а 1 х+ а 0

где а 0 , а 1 , а 2 …. а п некоторые числа, причем а п 0, п 

а п х п старший член многочлена

а п коэффициент при старшем

члене

п степень многочлена

а 0 свободный член многочлена


Р(х)= а п х п п–1 х п–1 п–2 х п–2 +

+… + а 2 х 2 + а 1 х+ а 0

Если

а п =1 ,

то многочлен Р (х)- приведенный

Пример: х+3; х 5 +3х 2 -4

а п ≠1 ,

то многочлен Р (х)- неприведенный

Пример: 2 +х; -0,5х 7 +3х 3 -11


Теорема 1:

Два многочлена ( стандартного вида) тождественно равны, если равны их степени и равны коэффициенты при одинаковых степенях х.

Задача №1

Найти числа а и b, если многочлен х 3 + 6х 2 + ах + b равен кубу двучлена х + 2


Операции над многочленами:

1. Сложение и вычитание.

При сложении (вычитании) двух многочленов разной степени, получится многочлен, степень которого равна большей из имеющихся степеней.

Задача №2

Найдите сумму многочленов

х+3 и -0,5х 5 +3х 2 -4


Операции над многочленами:

1. Сложение и вычитание.

При сложении (вычитании) двух многочленов одной и той же степени, получится многочлен той же или меньшей степени.

Задача №3

Найдите сумму и разность многочленов

3 +3х 2 -х и -2х 3 +3х-4


Операции над многочленами:

2. Произведение.

Если многочлен р(х) имеет старшую степень m, а многочлен s(x) – степень n, то их произведение р(х)∙ s(x) имеет степень m+n.

Задача №4

Найдите произведение многочленов

х+3 и -0,5х 5 +3х 2 -4


Операции над многочленами:

3. Возведение в степень.

Если многочлен р(х) степени m возвести в степень n, то получится многочлен степени mn.

Задача №5

Возведите многочлен

-0,5х 5 +3х 2 -4 в квадрат


Операции над многочленами:

4. Деление многочлена намногочлен.

Если многочлен р(х) делится нацело на ненулевой многочлен s(х), если существует такой многочлен q(х), что выполняется тождество:

p(х) = s(х) · q(х)

р(х) –делимое (или кратное)

s(х) –делитель

q(х) –частное


Способ деления уголком

Разделить многочлен 2 +10х–3 на многочлен 2х+3

2х+3

3

2 +10х–3

2 +12х

1

2х–3

0


Задача №6

Разделить многочлен 3 +7х 2 – 6х +1 на многочлен 3х –1

Задача №7

Разделить многочлен х 3 – 3х 2 + 5х – 15 на многочлен х – 3

Задача №8

Разделить многочлен х 4 + 4 на многочлен х 2 + 2х + 2

Урок на тему: "Понятие и определение многочлена. Стандартный вид многочлена"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Электронное учебное пособие по учебнику Ю.Н. Макарычева
Электронное учебное пособие по учебнику Ш.А. Алимова

Ребята, вы уже изучали одночлены в теме: Стандартный вид одночлена. Определения. Примеры. Давайте повторим основные определения.

Одночлен – выражение, состоящие из произведения чисел и переменных. Переменные могут быть возведены в натуральную степень. Одночлен не содержит ни каких других действий, кроме умножения.

Стандартный вид одночлена – такой вид, когда на первом месте стоит коэффициент (числовой множитель), а за ним степени различных переменных.

Подобные одночлены – это либо одинаковые одночлены, либо одночлены, которые отличаются друг от друга на коэффициент.

Понятие многочлена

Многочлен, как и одночлен, - это обобщенное название математических выражений определенного вида. Мы уже сталкивались с такими обобщениями ранее. Например, "сумма", "произведение", "возведение в степень". Когда мы слышим "разность чисел", нам и в голову не придет мысль об умножении или делении. Также и многочлен - это выражение строго определенного вида.

Определение многочлена

Многочлен - это сумма одночленов.

Одночлены, входящие в состав многочлена, называются членами многочлена . Если слагаемых два, то мы имеем дело с двучленом, еcли три, то с трехчленом. Если слагаемых больше говорят - многочлен.

Примеры многочленов.

1) 2аb + 4сd (двучлен);

2) 4аb + 3сd + 4x (трехчлен);

3) 4а 2 b 4 + 4с 8 d 9 + 2xу 3 ;

3с 7 d 8 - 2b 6 c 2 d + 7xу - 5xy 2 .


Посмотрим внимательно на последние выражение. По определению, многочлен это - сумма одночленов, но в последнем примере мы не только складываем, но и вычитаем одночлены.
Чтобы внести ясность рассмотрим небольшой пример.

Запишем выражение а + b - с (договоримся, что а ≥ 0, b ≥ 0 и с ≥0 ) и ответим на вопрос: это сумма или разность? Сложно сказать.
Действительно, если переписать выражение, как а + b + (-с) , мы получим сумму двух положительных и одного отрицательного слагаемых.
Если посмотреть на наш пример, то мы имеем дело именно с суммой одночленов с коэффициентами: 3, - 2, 7, -5. В математике есть термин "алгебраическая сумма". Таким образом, в определении многочлена имеется в виду "алгебраическая сумма".

А вот запись вида 3а: b + 7с многочленом не является потому, что 3а: b не является одночленом.
Не является многочленом и запись вида 3b + 2а * (с 2 + d), так как 2а * (с 2 + d) - не одночлен. Если раскрыть скобки, то полученное выражение будет являться многочленом.
3b + 2а * (с 2 + d) = 3b + 2ас 2 + 2аd.

Степенью многочлена является наивысшая степень его членов.
Многочлен а 3 b 2 +а 4 имеет пятую степень, так как степень одночлена а 3 b 2 равна 2 + 3= 5, а степень одночлена а 4 равна 4.

Стандартный вид многочлена

Многочлен, не имеющий подобных членов и записанный в порядке убывания степеней членов многочлена, является многочленом стандартного вида.

Многочлен приводят к стандартному виду, что бы убрать излишнюю громоздкость написания и упростить дальнейшие действия с ним.

Действительно, зачем к примеру писать длинное выражение 2b 2 + 3b 2 + 4b 2 + 2а 2 + а 2 + 4 + 4, когда его можно записать короче 9b 2 + 3а 2 + 8 .

Чтобы привести многочлен к стандартному виду, надо:
1. привести все его члены к стандартному виду,
2. сложить подобные (одинаковые или с разным числовым коэффициентом) члены. Данная процедура часто называется приведением подобных .

Пример.
Привести многочлен аba + 2у 2 х 4 х + у 2 х 3 х 2 + 4 + 10а 2 b + 10 к стандартному виду.

Решение.

а 2 b + 2 х 5 у 2 + х 5 у 2 + 10а 2 b + 14= 11а 2 b + 3 х 5 у 2 + 14.

Определим степени одночленов, входящих в состав выражения, и расставим их в порядке убывания.
11а 2 b имеет третью степень, 3 х 5 у 2 имеет седьмую степень, 14 – нулевую степень.
Значит, на первое место мы поставим 3 х 5 у 2 (7 степень), на второе - 12а 2 b (3 степень) и на третье - 14 (нулевая степень).
В итоге получим многочлен стандартного вида 3х 5 у 2 + 11а 2 b + 14.

Примеры для самостоятельного решения

Привести к стандартному виду многочлены.

1) 4b 3 аa - 5х 2 у + 6ас - 2b 3 а 2 - 56 + ас + х 2 у + 50 * (2 а 2 b 3 - 4х 2 у + 7ас - 6);

2) 6а 5 b + 3х 2 у + 45 + х 2 у + аb - 40 * (6а 5 b + 4ху + аb + 5);

3) 4ах 2 + 5bс - 6а - 24bс + хаx 4 x (5ах 6 - 19bс - 6а);

4) 7аbс 2 + 5асbс + 7аb 2 - 6bаb + 2саbс (14аbс 2 + аb 2).

Заочная школа 7 класс. Задание №2.

Методическое пособие №2.

Темы:

    Многочлены. Сумма, разность и произведение многочленов;

    Решение уравнений и задач;

    Разложение многочленов на множители;

    Формулы сокращенного умножения;

    Задачи для самостоятельного решения.

    Многочлены. Сумма, разность и произведение многочленов.

Определение. Многочленом называется сумма одночленов.

Определение. Одночлены, из которых составлен многочлен, называют членами многочлена .

Умножение одночлена на многочлен .

    Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить.

Умножение многочлена на многочлен .

    Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.

Примеры решения заданий:

    Упростите выражение:

Решение.

Решение :

Так как, по условию коэффициент при должен быть равен нулю, то

Ответ : -1.

    Решение уравнений и задач.

Определение . Равенство содержащее переменную, называется уравнением с одной переменной или уравнением с одним неизвестным .

Определение . Корнем уравнения (решением уравнения) называется значение переменной, при котором уравнение обращается в верное равенство.

Решить уравнение - значит найти множество корней.

Определение. Уравнение вида
, где х переменная, a и b – некоторые числа, называют линейным уравнением с одной переменной.

Определение.

Множество корней линейного уравнения может:


Примеры решения заданий :

    Является ли данное число 7 корнем уравнения:

Решение :

Таким образом, х=7 - корень уравнения .

Ответ : да.

    Решите уравнения:


Решение:

Ответ: -12

Ответ: -0,4

    От пристани в город отправилась лодка со скоростью 12км/ч, а через полчаса в этом направлении отправился пароход со скоростью 20 км/ч. Каково расстояние от пристани до города, если пароход пришел в город раньше лодки на 1,5 ч.

Решение:

Обозначим за х – расстояние от пристани до города.

Скорость (км/ч )

Время (ч )

Путь (км)

Лодка

Пароход

По условию задачи, лодка затратила времени на 2 часа больше, чем пароход (так как пароход вышел от пристани на полчаса позже и прибыл в город на 1,5ч раньше лодки ).

Составим и решим уравнение:

60 км – расстояние от пристани до города.

Ответ: 60 км.

    Длину прямоугольника уменьшили на 4 см и получили квадрат, площадь которого меньше площади прямоугольника на 12см². Найдите площадь прямоугольника.

Решение:

Пусть х – сторона прямоугольника.

Длина

Ширина

Площадь

Прямоугольник

х(х-4)

Квадрат

(х-4)(х-4)

По условию задачи площадь квадрата меньше площади прямоугольника на 12см².

Составим и решим уравнение:

7 см – длина прямоугольника.

(см²) – площадь прямоугольника.

Ответ: 21 см² .

    Туристы прошли намеченный маршрут за три дня. В первый день они прошли 35% намеченного маршрута, во второй – на 3 км больше, чем в первый, а в третий – оставшиеся 21 км. Какова длина маршрута?

Решение:

Пусть х длина всего маршрута.

1 день

2 день

3 день

Длина пути

0,35х+3

Всего длина пути составила х км.

Таким образом, составим и решим уравнение:

0,35х+0,35х+21=х

0,7х+21=х

0,3х=21

70 км длина всего маршрута.

Ответ: 70 км.

    Разложение многочленов на множители.

Определение . Представление многочлена в виде произведения двух или нескольких многочленов называют разложением на множители.

    Вынесение общего множителя за скобки .

Пример :

    Способ группировки .

Группировку нужно производить так, чтобы в каждой группе оказался общий множитель, кроме того, после вынесения общего множителя за скобки в каждой группе, полученные выражения также должны иметь общий множитель.

Пример :

    Формулы сокращенного умножения.

    Произведение разности двух выражения и их суммы равно разности квадратов этих выражений.

    Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений, плюс квадрат второго выражения. решения . 1. Найдите остаток при делении многочлена х6 – 4х4 + х3 ... не имеет решений , а решениями второй служат пары (1; 2) и (2; 1). Ответ: (1; 2) , (2; 1). Задачи для самостоятельного решения . Решите систему...

  • Примерная учебная программа по алгебре и началам анализа для 10 -11 классов (профильный уровень) Пояснительная записка

    Программа

    В каждом параграфе дается необходимое количество задач для самостоятельного решения в порядке повышения их сложности. ... алгоритм разложения многочлена по степеням двучлена; многочлены с комплексными коэффициентами; многочлены с действительными...

  • Элективный курс «Решение нестандартных задач. 9 класс» Выполнил учитель математики

    Элективный курс

    Уравнение равносильно уравнению Р(х) = Q(X), где Р(х) и Q(x)– некоторые многочлены с одной переменной х.Перенося Q(x) в левую часть... = . ОТВЕТ: х1=2, х2=-3, хз=, х4= . ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ . Решить следующие уравнения: х4 – 8х...

  • Программа факультатива по математике для 8 класса

    Программа

    Теорему алгебры, теорему Виета для квадратного трёхчлена и для многочлена произвольной степени, теорему о рациональных... материал. Даётся не только список задач для самостоятельного решения , но и задание сделать модель-развёртку...