Что показывает коэффициент корреляции в статистике. Корреляционный анализ

Коэффициент корреляции (или линейный коэффициент корреляции) обозначается как «r» (в редких случаях как «ρ») и характеризует линейную корреляцию (то есть взаимосвязь, которая задается некоторым значением и направлением) двух или более переменных. Значение коэффициента лежит между -1 и +1, то есть корреляция бывает как положительной, так и отрицательной. Если коэффициент корреляции равен -1, имеет место идеальная отрицательная корреляция; если коэффициент корреляции равен +1, имеет место идеальная положительная корреляция. В остальных случаях между двумя переменными наблюдается положительная корреляция, отрицательная корреляция или отсутствие корреляции. Коэффициент корреляции можно вычислить вручную, с помощью бесплатных онлайн-калькуляторов или с помощью хорошего графического калькулятора.

Шаги

Вычисление коэффициента корреляции вручную

    Соберите данные. Перед тем как приступить к вычислению коэффициента корреляции, изучите данные пары чисел. Лучше записать их в таблицу, которую можно расположить вертикально или горизонтально. Каждую строку или столбец обозначьте как «х» и «у».

    • Например, даны четыре пары значений (чисел) переменных «х» и «у». Можно создать следующую таблицу:
      • x || y
      • 1 || 1
      • 2 || 3
      • 4 || 5
      • 5 || 7
  1. Вычислите среднее арифметическое «х». Для этого сложите все значения «х», а затем полученный результат разделите на количество значений.

    Найдите среднее арифметическое «у». Для этого выполните аналогичные действия, то есть сложите все значения «у», а затем сумму разделите на количество значений.

    Вычислите стандартное отклонение «х». Вычислив средние значения «х» и «у», найдите стандартные отклонения этих переменных. Стандартное отклонение вычисляется по следующей формуле:

    Вычислите стандартное отклонение «у». Выполните действия, которые описаны в предыдущем шаге. Воспользуйтесь той же формулой, но подставьте в нее значения «у».

    Запишите основную формулу для вычисления коэффициента корреляции. В эту формулу входят средние значения, стандартные отклонения и количество (n) пар чисел обеих переменных. Коэффициент корреляции обозначается как «r» (в редких случаях как «ρ»). В этой статье используется формула для вычисления коэффициента корреляции Пирсона.

    Вы вычислили средние значения и стандартные отклонения обеих переменных, поэтому можно воспользоваться формулой для вычисления коэффициента корреляции. Напомним, что «n» – это количество пар значений обеих переменных. Значение других величин были вычислены ранее.

    • В нашем примере вычисления запишутся так:
    • ρ = (1 n − 1) Σ (x − μ x σ x) ∗ (y − μ y σ y) {\displaystyle \rho =\left({\frac {1}{n-1}}\right)\Sigma \left({\frac {x-\mu _{x}}{\sigma _{x}}}\right)*\left({\frac {y-\mu _{y}}{\sigma _{y}}}\right)}
    • ρ = (1 3) ∗ {\displaystyle \rho =\left({\frac {1}{3}}\right)*} [ (1 − 3 1 , 83) ∗ (1 − 4 2 , 58) + (2 − 3 1 , 83) ∗ (3 − 4 2 , 58) {\displaystyle \left({\frac {1-3}{1,83}}\right)*\left({\frac {1-4}{2,58}}\right)+\left({\frac {2-3}{1,83}}\right)*\left({\frac {3-4}{2,58}}\right)}
      + (4 − 3 1 , 83) ∗ (5 − 4 2 , 58) + (5 − 3 1 , 83) ∗ (7 − 4 2 , 58) {\displaystyle +\left({\frac {4-3}{1,83}}\right)*\left({\frac {5-4}{2,58}}\right)+\left({\frac {5-3}{1,83}}\right)*\left({\frac {7-4}{2,58}}\right)} ]
    • ρ = (1 3) ∗ (6 + 1 + 1 + 6 4 , 721) {\displaystyle \rho =\left({\frac {1}{3}}\right)*\left({\frac {6+1+1+6}{4,721}}\right)}
    • ρ = (1 3) ∗ 2 , 965 {\displaystyle \rho =\left({\frac {1}{3}}\right)*2,965}
    • ρ = (2 , 965 3) {\displaystyle \rho =\left({\frac {2,965}{3}}\right)}
    • ρ = 0 , 988 {\displaystyle \rho =0,988}
  2. Проанализируйте полученный результат. В нашем примере коэффициент корреляции равен 0,988. Это значение некоторым образом характеризует данный набор пар чисел. Обратите внимание на знак и величину значения.

    • Так как значение коэффициента корреляции положительно, между переменными «х» и «у» имеет место положительная корреляция. То есть при увеличении значения «х», значение «у» тоже увеличивается.
    • Так как значение коэффициента корреляции очень близко к +1, значения переменных «х» и «у» сильно взаимосвязаны. Если нанести точки на координатную плоскость, они расположатся близко к некоторой прямой.

    Использование онлайн-калькуляторов для вычисления коэффициента корреляции

    1. В интернете найдите калькулятор для вычисления коэффициента корреляции. Этот коэффициент довольно часто вычисляется в статистике. Если пар чисел много, вычислить коэффициент корреляции вручную практически невозможно. Поэтому существуют онлайн-калькуляторы для вычисления коэффициента корреляции. В поисковике введите «коэффициент корреляции калькулятор» (без кавычек).

      Введите данные. Ознакомьтесь с инструкциями на сайте, чтобы правильно ввести данные (пары чисел). Крайне важно вводить соответствующие пары чисел; в противном случае вы получите неверный результат. Помните, что на разных веб-сайтах различные форматы ввода данных.

      • Например, на сайте http://ncalculators.com/statistics/correlation-coefficient-calculator.htm значения переменных «х» и «у» вводятся в двух горизонтальных строках. Значения разделяются запятыми. То есть в нашем примере значения «х» вводятся так: 1,2,4,5, а значения «у» так: 1,3,5,7.
      • На другом сайте, http://www.alcula.com/calculators/statistics/correlation-coefficient/ , данные вводятся по вертикали; в этом случае не перепутайте соответствующие пары чисел.
    2. Вычислите коэффициент корреляции. Введя данные, просто нажмите на кнопку «Calculate», «Вычислить» или аналогичную, чтобы получить результат.

    Использование графического калькулятора

    1. Введите данные. Возьмите графический калькулятор, перейдите в режим статистических вычислений и выберите команду «Edit» (Редактировать).

      • На разных калькуляторах нужно нажимать различные клавиши. В этой статье рассматривается калькулятор Texas Instruments TI-86.
      • Чтобы перейти в режим статистических вычислений, нажмите – Stat (над клавишей «+»). Затем нажмите F2 – Edit (Редактировать).
    2. Удалите предыдущие сохраненные данные. В большинстве калькуляторов введенные статистические данные хранятся до тех пор, пока вы не сотрете их. Чтобы не спутать старые данные с новыми, сначала удалите любую сохраненную информацию.

      • С помощью клавиш со стрелками переместите курсор и выделите заголовок «xStat». Затем нажмите Clear (Очистить) и Enter (Ввести), чтобы удалить все значения, введенные в столбец xStat.
      • С помощью клавиш со стрелками выделите заголовок «yStat». Затем нажмите Clear (Очистить) и Enter (Ввести), чтобы удалить все значения, введенные в столбец уStat.
    3. Введите исходные данные. С помощью клавиш со стрелками переместите курсор в первую ячейку под заголовком «xStat». Введите первое значение и нажмите Enter. В нижней части экрана отобразится «xStat (1) = __», где вместо пробела будет стоять введенное значение. После того как вы нажмете Enter, введенное значение появится в таблице, а курсор переместится на следующую строку; при этом в нижней части экрана отобразится «xStat (2) = __».

      • Введите все значения переменной «х».
      • Введя все значения переменной «х», с помощью клавиш со стрелками перейдите в столбец yStat и введите значения переменной «у».
      • После ввода всех пар чисел нажмите Exit (Выйти), чтобы очистить экран и выйти из режима статистических вычислений.

Различные признаки могут быть связаны между собой.

Выделяют 2 вида связи между ними:

  • функциональная;
  • корреляционная.

Корреляция в переводе на русский язык – не что иное, как связь.
В случае корреляционной связи прослеживается соответствие нескольких значений одного признака нескольким значениям другого признака. В качестве примеров можно рассмотреть установленные корреляционные связи между:

  • длиной лап, шеи, клюва у таких птиц как цапли, журавли, аисты;
  • показателями температуры тела и частоты сердечных сокращений.

Для большинства медико-биологических процессов статистически доказано присутствие этого типа связи.

Статистические методы позволяют установить факт существования взаимозависимости признаков. Использование для этого специальных расчетов приводит к установлению коэффициентов корреляции (меры связанности).

Такие расчеты получили название корреляционного анализа. Он проводится для подтверждения зависимости друг от друга 2-х переменных (случайных величин), которая выражается коэффициентом корреляции.

Использование корреляционного метода позволяет решить несколько задач:

  • выявить наличие взаимосвязи между анализируемыми параметрами;
  • знание о наличии корреляционной связи позволяет решать проблемы прогнозирования. Так, существует реальная возможность предсказывать поведение параметра на основе анализа поведения другого коррелирующего параметра;
  • проведение классификации на основе подбора независимых друг от друга признаков.

Для переменных величин:

  • относящихся к порядковой шкале, рассчитывается коэффициент Спирмена;
  • относящихся к интервальной шкале – коэффициент Пирсона.

Это наиболее часто используемые параметры, кроме них есть и другие.

Значение коэффициента может выражаться как положительным, так и отрицательными.

В первом случае при увеличении значения одной переменной наблюдается увеличение второй. При отрицательном коэффициенте – закономерность обратная.

Для чего нужен коэффициент корреляции?

Случайные величины, связанные между собой, могут иметь совершенно разную природу этой связи. Не обязательно она будет функциональной, случай, когда прослеживается прямая зависимость между величинами. Чаще всего на обе величины действует целая совокупность разнообразных факторов, в случаях, когда они являются общими для обеих величин, наблюдается формирование связанных закономерностей.

Это значит, что доказанный статистически факт наличия связи между величинами не является подтверждением того, что установлена причина наблюдаемых изменений. Как правило, исследователь делает вывод о наличии двух взаимосвязанных следствий.

Свойства коэффициента корреляции

Этой статистической характеристике присущи следующие свойства:

  • значение коэффициента располагается в диапазоне от -1 до +1. Чем ближе к крайним значениям, тем сильнее положительная либо отрицательная связь между линейными параметрами. В случае нулевого значения речь идет об отсутствии корреляции между признаками;
  • положительное значение коэффициента свидетельствует о том, что в случае увеличения значения одного признака наблюдается увеличение второго (положительная корреляция);
  • отрицательное значение – в случае увеличения значения одного признака наблюдается уменьшение второго (отрицательная корреляция);
  • приближение значения показателя к крайним точкам (либо -1, либо +1) свидетельствует о наличии очень сильной линейной связи;
  • показатели признака могут изменяться при неизменном значении коэффициента;
  • корреляционный коэффициент является безразмерной величиной;
  • наличие корреляционной связи не является обязательным подтверждением причинно-следственной связи.

Значения коэффициента корреляции

Охарактеризовать силу корреляционной связи можно прибегнув к шкале Челдока, в которой определенному числовому значению соответствует качественная характеристика.

В случае положительной корреляции при значении:

  • 0-0,3 – корреляционная связь очень слабая;
  • 0,3-0,5 – слабая;
  • 0,5-0,7 – средней силы;
  • 0,7-0,9 – высокая;
  • 0,9-1 – очень высокая сила корреляции.

Шкала может использоваться и для отрицательной корреляции. В этом случае качественные характеристики заменяются на противоположные.

Можно воспользоваться упрощенной шкалой Челдока, в которой выделяется всего 3 градации силы корреляционной связи:

  • очень сильная – показатели ±0,7 — ±1;
  • средняя – показатели ±0,3 — ±0,699;
  • очень слабая – показатели 0 — ±0,299.

Данный статистический показатель позволяет не только проверить предположение о существовании линейной взаимосвязи между признаками, но и установить ее силу.

Виды коэффициента корреляции

Коэффициенты корреляции можно классифицировать по знаку и значению:

  • положительный;
  • нулевой;
  • отрицательный.

В зависимости от анализируемых значений рассчитывается коэффициент:

  • Пирсона;
  • Спирмена;
  • Кендала;
  • знаков Фехнера;
  • конкорддации или множественной ранговой корреляции.

Корреляционный коэффициент Пирсона используется для установления прямых связей между абсолютными значениями переменных. При этом распределения обоих рядов переменных должны приближаться к нормальному. Сравниваемые переменные должны отличаться одинаковым числом варьирующих признаков. Шкала, представляющая переменные, должна быть интервальной либо шкалой отношений.

  • точного установления корреляционной силы;
  • сравнения количественных признаков.

Недостатков использования линейного корреляционного коэффициента Пирсона немного:

  • метод неустойчив в случае выбросов числовых значений;
  • с помощью этого метода возможно определение корреляционной силы только для линейной взаимосвязи, при других видах взаимных связей переменных следует использовать методы регрессионного анализа.

Ранговая корреляция определяется методом Спирмена, позволяющим статистически изучить связь между явлениями. Благодаря этому коэффициенту вычисляется фактически существующая степень параллелизма двух количественно выраженных рядов признаков, а также оценивается теснота, выявленной связи.

  • не требующих точного определения значение корреляционной силы;
  • сравниваемые показатели имеют как количественные, так и атрибутивные значения;
  • равнения рядов признаков с открытыми вариантами значений.

Метод Спирмена относится к методам непараметрического анализа, поэтому нет необходимости проверять нормальность распределения признака. К тому же он позволяет сравнивать показатели, выраженные в разных шкалах. Например, сравнение значений количества эритроцитов в определенном объеме крови (непрерывная шкала) и экспертной оценки, выражаемой в баллах (порядковая шкала).

На эффективность метода отрицательно влияет большая разница между значениями, сравниваемых величин. Не эффективен метод и в случаях когда измеряемая величина характеризуется неравномерным распределением значений.

Пошаговый расчет коэффициента корреляции в Excel

Расчёт корреляционного коэффициента предполагает последовательное выполнение ряда математических операций.

Приведенная выше формула расчета коэффициента Пирсона, показывает насколько трудоемок этот процесс если выполнять его вручную.
Использование возможностей Excell ускоряет процесс нахождения коэффициента в разы.

Достаточно соблюсти несложный алгоритм действий:

  • введение базовой информации – столбец значений х и столбец значений у;
  • в инструментах выбирается и открывается вкладка «Формулы»;
  • в открывшейся вкладке выбирается «Вставка функции fx»;
  • в открывшемся диалоговом окне выбирается статистическая функция «Коррел», позволяющая выполнить расчет корреляционного коэффициента между 2 массивами данных;
  • открывшееся окно вносятся данные: массив 1 – диапазон значений столбца х (данные необходимо выделить), массив 2 – диапазон значений столбца у;
  • нажимается клавиша «ок», в строке «значение» появляется результат расчета коэффициента;
  • вывод относительно наличия корреляционной связи между 2 массивами данных и ее силе.

Коэффициент корреляции - это степень связи между двумя переменными. Его расчет дает представление о том, есть ли зависимость между двумя массивами данных. В отличие от регрессии, корреляция не позволяет предсказывать значения величин. Однако расчет коэффициента является важным этапом предварительного статистического анализа. Например, мы установили, что коэффициент корреляции между уровнем прямых иностранных инвестиций и темпом роста ВВП является высоким. Это дает нам представление о том, что для обеспечения благосостояния нужно создать благоприятный климат именно для зарубежных предпринимателей. Не такой уж и очевидный вывод на первый взгляд!

Корреляция и причинность

Пожалуй, нет ни одной сферы статистики, которая бы так прочно вошла в нашу жизнь. Коэффициент корреляции используется во всех областях общественных знаний. Основная его опасность заключается в том, что зачастую его высокими значениями спекулируют для того, чтобы убедить людей и заставить их поверить в какие-то выводы. Однако на самом деле сильная корреляция отнюдь не свидетельствует о причинно-следственной зависимости между величинами.

Коэффициент корреляции: формула Пирсона и Спирмана

Существует несколько основных показателей, которые характеризуют связь между двумя переменными. Исторически первым является коэффициент линейной корреляции Пирсона. Его проходят еще в школе. Он был разработан К. Пирсоном и Дж. Юлом на основе работ Фр. Гальтона. Этот коэффициент позволяет увидеть взаимосвязь между рациональными числами, которые изменяются рационально. Он всегда больше -1 и меньше 1. Отрицательно число свидетельствует об обратно пропорциональной зависимости. Если коэффициент равен нулю, то связи между переменными нет. Равен положительному числу - имеет место прямо пропорциональная зависимость между исследуемыми величинами. Коэффициент ранговой корреляции Спирмана позволяет упростить расчеты за счет построения иерархии значений переменных.

Отношения между переменными

Корреляция помогает найти ответ на два вопроса. Во-первых, является ли связь между переменными положительной или отрицательной. Во-вторых, насколько сильна зависимость. Корреляционный анализ является мощным инструментом, с помощью которого можно получить эту важную информацию. Легко увидеть, что семейные доходы и расходы падают и растут пропорционально. Такая связь считается положительной. Напротив, при росте цены на товар, спрос на него падает. Такую связь называют отрицательной. Значения коэффициента корреляции находятся в пределах между -1 и 1. Нуль означает, что зависимости между исследуемыми величинами нет. Чем ближе полученный показатель к крайним значениям, тем сильнее связь (отрицательная или положительная). Об отсутствии зависимости свидетельствует коэффициент от -0,1 до 0,1. Нужно понимать, что такое значение свидетельствует только об отсутствии линейной связи.

Особенности применения

Использование обоих показателей сопряжено с определенными допущениями. Во-первых, наличие сильной связи, не обуславливает того факта, что одна величина определяет другую. Вполне может существовать третья величина, которая определяет каждую из них. Во-вторых, высокий коэффициент корреляции Пирсона не свидетельствует о причинно-следственной связи между исследуемыми переменными. В-третьих, он показывает исключительно линейную зависимость. Корреляция может использоваться для оценки значимых количественных данных (например, атмосферного давления, температуры воздуха), а не таких категорий, как пол или любимый цвет.

Множественный коэффициент корреляции

Пирсон и Спирман исследовали связь между двумя переменными. Но как действовать в том случае, если их три или даже больше. Здесь на помощь приходит множественный коэффициент корреляции. Например, на валовый национальный продукт влияют не только прямые иностранные инвестиции, но и монетарная и фискальная политика государства, а также уровень экспорта. Темп роста и объем ВВП - это результат взаимодействия целого ряда факторов. Однако нужно понимать, что модель множественной корреляции основывается на целом ряде упрощений и допущений. Во-первых, исключается мультиколлинеарность между величинами. Во-вторых, связь между зависимой и оказывающими на нее влияние переменными считается линейной.

Области использования корреляционно-регрессионного анализа

Данный метод нахождения взаимосвязи между величинами широко применяется в статистике. К нему чаще всего прибегают в трех основных случаях:

  1. Для тестирования причинно-следственных связей между значениями двух переменных. В результате исследователь надеется обнаружить линейную зависимость и вывести формулу, которая описывает эти отношения между величинами. Единицы их измерения могут быть различными.
  2. Для проверки наличия связи между величинами. В этом случае никто не определяет, какая переменная является зависимой. Может оказаться, что значение обеих величин обуславливает какой-то другой фактор.
  3. Для вывода уравнения. В этом случае можно просто подставить в него числа и узнать значения неизвестной переменной.

Человек в поисках причинно-следственной связи

Сознание устроено таким образом, что нам обязательно нужно объяснить события, которые происходят вокруг. Человек всегда ищет связь между картиной мира, в котором он живет, и получаемой информацией. Часто мозг создает порядок из хаоса. Он запросто может увидеть причинно-следственную связь там, где ее нет. Ученым приходится специально учиться преодолевать эту тенденцию. Способность оценивать связи между данными объективно необходима в академической карьере.

Предвзятость средств массовой информации

Рассмотрим, как наличие корреляционной связи может быть неправильно истолковано. Группу британских студентов, отличающихся плохим поведением, опросили относительно того, курят ли их родители. Потом тест опубликовали в газете. Результат показал сильную корреляцию между курением родителей и правонарушениями их детей. Профессор, который проводил это исследование, даже предложил поместить на пачки сигарет предупреждение об этом. Однако существует целый ряд проблем с таким выводом. Во-первых, корреляция не показывает, какая из величин является независимой. Поэтому вполне можно предположить, что пагубная привычка родителей вызвана непослушанием детей. Во-вторых, нельзя с уверенностью сказать, что обе проблемы не появились из-за какого-то третьего фактора. Например, низкого дохода семей. Следует отметить эмоциональный аспект первоначальных выводов профессора, который проводил исследование. Он был ярым противником курения. Поэтому нет ничего удивительного в том, что он интерпретировал результаты своего исследования именно так.

Выводы

Неправильное толкование корреляции как причинно-следственной связи между двумя переменными может стать причиной позорных ошибок в исследованиях. Проблема состоит в том, что оно лежит в самой основе человеческого сознания. Многие маркетинговые трюки построены именно на этой особенности. Понимание различия между причинно-следственной связью и корреляцией позволяет рационально анализировать информацию как в повседневной жизни, так и в профессиональной карьере.

7.3.1. Коэффициенты корреляции и детерминации. Можно количественно определить тесноту связи между факторами и ее направленность (прямую или обратную), вычислив:

1) если нужно определить носящую линейный характер взаимосвязь между двумя факторами, - парный коэффициент корреляции : в 7.3.2 и 7.3.3 рассмотрены операции вычисления парного линейного коэффициента корреляции по Бравэ–Пирсону (r ) и парного рангового коэффициента корреляции по Спирмену (r );

2) если мы хотим определить взаимосвязь между двумя факторами, но зависимость эта явно нелинейная - то корреляционное отношение ;

3) если мы хотим, определить связь между одним фактором и некоторой совокупностью других факторов - то (или, что то же самое, «коэффициент множественной корреляции»);

4) если мы хотим выявить изолированно связь одного фактора только с конкретным другим, входящим в группу факторов, воздействующих на первый, для чего приходится считать влияние всех остальных факторов неизменным - то частный (парциальный) коэффициент корреляции .

Любой коэффициент корреляции (r, r) не может по абсолютной величине превышать 1, то есть –1 < r (r) < 1). Если получено значение 1, то это значит, что рассматриваемая зависимость не статистическая, а функциональная, если 0 - корреляции нет вообще.

Знак при коэффициенте корреляции определяет направ­ленность связи: знак «+» (либо отсутствие знака) означает, что связь прямая (положительная ), знак «–» - что связь обратная (отрицательная ). К тесноте связи знак никакого отношения не имеет

Коэффициент корреляции характеризует статистическую взаимосвязь. Но часто нужно определить другого типа зависимость, а именно: каков вклад некоторого фактора в формирование другого связанного с ним фактора. Такого рода зависимость с некоторой долей условности характеризуется коэффициентом детерминации (D ), определяемым по формуле D = r 2 ´100% (где r - коэффициент корреляции по Бравэ–Пирсону, см. 7.3.2). Если измерения проводились в шкале порядка (шкале рангов) , то с некоторым ущербом для достоверности можно вместо значения r подставить в формулу значение r (коэффициента корреляции по Спирмену, см. 7.3.3).

Например, если мы получили как характеристику зависимости фактора Б от фактора А коэффициент корреляции r = 0,8 или r = –0,8, то D = 0,8 2 ´100% = 64%, то есть около 2½ 3. Следовательно, вклад фактора А и его изменений в формирование фактора Б составляет примерно 2½ 3 от суммарного вклада всех вообще факторов.

7.3.2. Коэффициент корреляции по Бравэ-Пирсону. Процедуру вычисления коэффициента корреляции по Бравэ–Пирсону (r ) можно применять только в тех случаях, когда связь рассматривается на базе выборок, имеющих нормальное распределение частот (нормальное распределение ) и полученных измерениями в шкалах интервалов или отношений. Расчетная формула этого коэффициента корреляции:



å (x i – )(y i – )

r = .

n×s x ×s y

Что показывает коэффициент корреляции? Во-первых, знак при коэффициенте корреляции показывает направленность связи, а именно: знак «–» свидетельствует о том, что связь обратная , или отрицательная (имеет место тенденция: с убыванием значений одного фактора соответствующие значения другого фактора растут, а с возрастанием - убывают), а отсутствие знака или знак «+» свидетельствуют о прямой , или положительной связи (имеет место тенденция: с увеличением значений одного фактора увеличиваются и значения другого, а с уменьшением - уменьшаются). Во-вторых, абсолютная (не зависящая от знака) величина коэффициента корреляции говорит о тесноте (силе) связи. Принято считать (в достаточной мере условно): при значениях r < 0,3 корреляция очень слабая , нередко ее просто не принимают в расчет, при 0,3 £ r < 5 корреляция слабая , при 0,5 £ r < 0,7) - средняя , при 0,7 £ r £ 0,9) - сильная и, наконец, при r > 0,9 - очень сильная. В нашем случае (r » 0,83) связь обратная (отрицательная) и сильная.

Напомним: значения коэффициента корреляции могут находиться в интервале от –1 до +1. Выход значения r за эти пределы свидетельствует о том, что в расчетах допущена ошибка . Если r = 1, то это значит, что связь не статистическая, а функциональная - чего в спорте, биологии, медицине практически не бывает. Хотя при небольшом количестве измерений случай ный подбор значений, дающий картину функциональной связи, возможен, но такой случай тем менее вероятен, чем больше объем сопоставляемых выборок (n), то есть количество пар сравниваемых измерений.

Расчетная таблица (табл. 7,1)строится соответственно формуле.

Таблица 7.1.

Расчетная таблица для вычисления по Бравэ–Пирсону

x i y i (x i – ) (x i – ) 2 (y i – ) (y i – ) 2 (x i – )(y i – )
13,2 4,75 0,2 0,04 –0,35 0,1225 – 0,07
13,5 4,7 0,5 0,25 – 0,40 0,1600 – 0,20
12,7 5,10 – 0,3 0,09 0,00 0,0000 0,00
12,5 5,40 – 0,5 0,25 0,30 0,0900 – 0,15
13,0 5,10 0,0 0,00 0,00 0.0000 0,00
13,2 5,00 0,1 0,01 – 0,10 0,0100 – 0,02
13,1 5,00 0,1 0,01 – 0,10 0,0100 – 0,01
13,4 4,65 0,4 0,16 – 0,45 0,2025 – 0,18
12,4 5,60 – 0,6 0,36 0,50 0,2500 – 0,30
12,3 5,50 – 0,7 0,49 0,40 0,1600 – 0,28
12,7 5,20 –0,3 0,09 0,10 0,0100 – 0,03
åx i =137 =13,00 åy i =56,1 =5,1 å(x i – ) 2 = =1,78 å(y i – ) 2 = = 1,015 å(x i – )(y i – )= = –1,24

Поскольку s х = ï ï = ï ï» 0,42, а

s y =ï ï» 0,32, r » –1,24ï (11´0,42´0,32)» –1,24ï 1,48 » –0,83 .

Иными словами, нужно очень твердо знать, что коэффициент корреляции не может по абсолютной величине превосходить 1,0. Это нередко позволяет избежать грубейших ошибок, точнее - найти и исправить допущенные при подсчетах ошибки.

7.3.3. Коэффициент корреляции по Спирмену . Как уже было сказано, применять коэффициент корреляции по Бравэ–Пирсону (r) можно только в тех случаях, когда анализируемые факторы по распределению частот близки к нормальному и значения вариант получены измерениями обязательно в шкале отношений или в шкале интервалов, что бывает, если они выражены физическими единицами. В остальных случаях находят коэффициент корреляции по Спирмену (r ). Впрочем, этот коэффициент можно применять и в случаях, когда разрешено (и желательно! ) применять коэффициент корреляции по Бравэ-Пирсону. Но следует иметь в виду, что процедура определения коэффициента по Бравэ-Пирсону обладает большей мощностью («разрешающей способностью »), поэтому r более информативен, чем r . Даже при большом n отклонение r может быть порядка ±10%.

Таблица 7.2 Расчетная формула коэффици-

x i y i R x R y |d R | d R 2 ента корреляции по Спирмену

13,2 4,75 8,5 3,0 5,5 30,25 r = 1 – . Вос

13,5 4,70 11,0 2,0 9,0 81,00 пользуемся нашим примером

12,7 5,10 4,5 6,5 2,0 4,00 для расчета r , но построим

12,5 5,40 3,0 9,0 6,0 36,00 иную таблицу (табл.7.2).

13,0 5,10 6,0 6,5 0,5 0,25 Подставим значения:

13,2 5,00 8,5 4,5 4,0 16,00 r = 1– =

13,1 5,00 7,0 4,5 2,5 6,25 =1– 2538:1320 » 1–1,9 » – 0,9.

13,4 4,65 10,0 1,0 9,0 81,00 Мы видим: r оказался немного

12,4 5,60 2,0 11,0 9,0 81,00 больше, чем r , но это разли-

12,3 5,50 1,0 10,0 9,0 81,00 чие не очень велико. Ведь при

12,7 5,20 4,5 8,0 3,5 12,25 таком малом n значения r и r

åd R 2 = 423 очень уж приблизительны, мало достоверны, их действительное значение может колебаться в широких пределах, поэтому различие r иr в 0,1 малосущественно. Обычно r рассматривают как аналог r , но только менее точный . Знаки при r и r показывает направленность связи.

7.3.4. Применение и проверка достоверности коэффициентов корреляции. Определение степени корреляционной зависимости между факторами необходимо для управления развитием нужного нам фактора: для этого приходится влиять на другие факторы, существенно влияющие на него, и нужно знать меру их действенности. Знать про взаимосвязь факторов нужно для разработки или выбора готовых тестов: информативность теста определяется корреляцией его результатов с проявле­ниями интересующего нас признака или свойства. Без знания корреляций невозможны любые формы отбора.

Выше было отмечено, что в спортивной и вообще педагогической, медицинской и даже экономической и социологической практике большой интерес представляет определение того вклада , который один фактор вносит в формирование другого . Это связано с тем, что помимо рассматриваемого фактора-причины на целевой (интересующий нас) фактор действуют, давая каждый тот или иной вклад в него, и другие.

Считается, что мерой вклада каждого фактора-причины может служить коэффициент детерминации D i = r 2 ´100%. Так, например, если r = 0,6, т.е. связь между факторами А и Б средняя, то D = 0,6 2 ´100% = 36%. Зная, таким образом, что вклад фактора А в формирование фактора Б приблизительно 1½ 3, можно, например уделять целенаправленному развитию этого фактора приблизительно 1½ 3 тренировочного времени. Если же коэффициент корреляции r = 0,4 , то D = r 2 100% =16%, или примерно 1½ 6 - в два с лишним раза меньше, и уделять его развитию по этой логике следует соответственно лишь 1½ 6 часть тренировочного времени.

Величины D i для разных существенных факторов дают приблизительное представление о количественном взаимоот­ношении их влияний на интересующий нас целевой фактор, ради совершенствования которого мы, собственно, и работаем над другими факторами (например, прыгун в длину с разбега работает над повышением скорости своего спринтерского бега, так как оно является тем фактором, который дает самый значительный вклад в формирование результата в прыжках).

Напомним, что определяя D можно вместо r поставить r , хотя, конечно, точность определения оказывается ниже.

На основе выборочного (рассчитанного по выборочным данным) коэффициента корреляции нельзя делать вывод о достоверности факта наличия связи между рассматриваемыми факторами вообще. Для того, чтобы сделать такой вывод с той или иной степенью обоснованности, используют стандартные критерии значимости корреляции . Их применение предполагает линейную зависимость между факторами и нормальное распределение частот в каждом из них (имея в виду не выборочное, а генеральное их представление).

Можно, например, применить t-критерии Стьюдента. Его рас-

четная формула: t p = –2 , где k - исследуемый выборочный коэффициент корреляции, a n - объем сопоставляемых выборок. Полученное расчетное значение t-критерия (t р)сравнивают с табличным при выбранном нами уровне значимости и числе степеней свободы n = n – 2. Чтобы избавиться от расчетной работы, можно воспользоваться специальной таблицей критических значений выборочных коэффициентов корреляции (см. выше), соответствующих наличию достоверной связи между факторами (с учетом n и a ).

Таблица 7.3.

Граничные значений достоверности выборочного коэффициента корреляции

Число степеней свободы при определении коэффициентов корреляции принимают равным 2 (т.е. n = 2) Указанные в табл. 7.3 значения имеют нижней границей доверительного интервала истинного коэффициента корреляции 0, то есть при таких значениях нельзя утверждать, что корреляция вообще имеет место. При значении выборочного коэффициента корреляции выше указанного в таблице можно при соответствующем уровне значимости считать, что истинный коэффициент корреляции не равен нулю.

Но ответ на вопрос, есть ли реальная связь между рассматриваемыми факторами, оставляет место для другого вопроса: в каком интервале лежит истинное значение коэффициента корреляции, каким он может быть на самом деле, при бесконечно большом n ? Этот интервал для любого конкретного значения r и n сопоставляемых факторов можно рассчитать, но удобнее пользоваться системой графиков (номограммой ), где каждая пара кривых, построенная для не которого указанного над ними n , соответствует границам интервала.

Рис. 7.4. Доверительные границы выборочного коэффициента корреляции (a = 0,05). Каждая кривая соответствует указанному над ней n .

Обратясь к номограмме на рис. 7.4, можно определить интервал значений истинного коэффициента корреляции для вычисленных значений выборочного коэффициента корреляции при a = 0,05.

7.3.5. Корреляционные отношения. Если парная корреляция нелинейна , нельзя вычислять коэффициент корреляции, определяют корреляционные отношения . Обязательное требование: признаки должны быть измерены в шкале отношений или в шкале интервалов. Можно вычислять корреляционную зависимость фактора X от фактора Y и корреляционную зависимость фактора Y от фактора X - они различаются. При небольшом объеме n рассматриваемых выборок, представляющих факторы, для вычисления корреляционных отношений можно пользоваться формулами:

корреляционное отношение h x ½ y = ;

корреляционное отношение h y ½ x = .

Здесь и - средние арифметические выборок X и Y, и - внутриклассовые средние арифметические. Tо есть - среднее арифметическое тех значений в выборке фактора Х, с которыми сопряжены одинаковые значения в выборке фактора Y (например, если в факторе X имеются значения 4, 6, и 5, с которыми в выборке фактора Y сопряжены 3 варианты с одинаковым значением 9, то = (4+6+5)½ 3 = 5). Соответственно - среднее арифметическое тех значений в выборке фактора Y, с которыми сопряжены одинаковые значения в выборке фактора Х. Приведем пример и проведем расчет:

Х: 75 77 78 76 80 79 83 82 ; Y: 42 42 43 43 43 44 44 45 .

Таблица 7.4

Расчетная таблица

х i y i x y х i – х (х i – х ) 2 х i – х y (x i x y ) 2
–4 –1
–2
–3 –2
–1
–3
x=79 y=43 S=76 S=28

Следовательно, h y ½ x = » 0,63.

7.3.6. Частные и множественный коэффициенты корреляции. Чтобы оценить зависимость между 2-мя факторами, вычисляя коэффициенты корреляции, мы как бы по умолчанию предполагаем, что никакие другие факторы на эту зависимость никакого воздействия не оказывают. В реальности дело обстоит не так. Так, на зависимость между весом и ростом очень существенно влияют калорийность питания, величина систематической физической нагрузки, наследственность и др. Когда нужно при оценке связи между 2-мя факторами учесть существенное влияние других факторов и в то же время как бы изолироваться от них, считая их неизменными , вычисляют частные (иначе - парциальные ) коэффициенты корреляции.

Пример: нужно оценить парные зависимости между 3-мя существенно действующими факторами X, Y и Z. Обозначим r XY (Z) частный (парциальный) коэффициент корреляции между факторами X и Y (при этом величину фактора Z считаем неизменной), r ZX (Y) - частный коэффициент корреляции между факторами Z и X (при неизменном значении фактора Y), r YZ (X) - частный коэффициент корреляции между факторами Y и Z (при неизменном значении фактора X). Используя вычисленные простые парные (по Бравэ-Пирсону) коэффициенты корреляции r XY , r XZ и r YZ , м

ожно вычислить частные (парциальные) коэффициенты корреляции по формулам:

r XY – r XZ ´r YZ r XZ – r XY ´r ZY r ZY –r ZX ´r YZ

r XY (Z) = ; r XZ (Y) = ; r ZY (Х) =

Ö(1–r 2 XZ)(1–r 2 YZ) Ö(1– r 2 XY)(1–r 2 ZY) Ö(1–r 2 ZX)(1–r 2 YX)

И частные коэффициенты корреляции могут принимать значения от –1 до +1. Возведя их в квадрат, получают соответствующие частные коэффициенты детерминации , называемые также частными мерами определенности (умножив на 100, выразим в %%). Частные коэффициенты корреляции больше или меньше отличаются от простых (полных) парных коэффициентов, что зависит от силы влияния на них 3-го фактора (как бы неизменного). Нулевая гипотеза (Н 0), то есть гипотеза об отсутствии связи (зависимости) между факторами X и Y, проверяется (при общем количество признаков k ) вычислением t-критерия по формуле: t Р = r XY (Z) ´ (n –k) 1 ½ 2 ´ (1–r 2 XY (Z)) –1 ½ 2 .

Если t Р < t a n , гипотеза принимается (считаем, что зависимости нет), если же t Р ³ t a n - гипотеза опровергается, то есть считается, что зависимость действительно имеет место. t a n берется по таблице t -критерия Стьюдента, причем k - количество учитываемых факторов (в нашем примере 3), число степеней свободы n = n – 3. Другие частные коэффициенты корреляции проверяют аналогично (в формулу вместо r XY (Z) подставляют соответственно r XZ (Y) или r ZY (X)).

Таблица 7.5

Исходные данные

Ö (1 – 0,71 2)(1 – 0,71 2) Ö (1 – 0,5)(1 – 0,5)

Для оценки зависимости фактора Х от совместного действия нескольких факторов (здесь факторы Y и Z), вычисляют значения простых парных коэффициентов корреляции и, используя их, вычисляют множественный коэффициент корреляции r X (YZ) :

Ö r 2 XY + r 2 XZ – 2r XY ´ r XZ ´ r YZ

r X (YZ) = .

Ö 1 – r 2 YZ

7.2.7. Коэффициент ассоциации. Нередко требуется количественно оценить зависимость между качественными признаками, т.е. такими признаками, которые нельзя представить (охарактеризовать) количественно, которые неизмеримы . Например, стоит задача выяснить, существует ли зависимость между спортивной специализацией занимающихся и такими личностными свойствами, как интравертность (направленность личности на явления собственного субъективного мира) и экстравертность (направленность личности на мир внешних объектов). Условные обозначения представим в табл. 7.6.

Таблица 7.6.

X (лет) Y (раз) Z (раз) X (лет) Y (раз) Z (раз)
Признак 1 Признак 2 Интравертность Экстравертность
Спортивные игры а b
Гимнастика с d

Очевидно, что числами, имеющимися в нашем распоряжении, здесь могут быть только частоты распределений. В таком случае вычисляют коэффициент ассоциации (другое название «коэффициент сопряженности »). Рассмотрим простейший случай: связь между двумя парами признаков, при этом вычисленный коэффициент сопряженности называют тетрахорическим (см. табл.).

Таблица 7.7.

а =20 b = 15 a + b = 35
с =15 d = 5 c + d = 20
a + c = 35 b + d = 20 n = 55

Вычисления производим по формуле:

ad – bc 100 – 225 –123

Вычисление коэффициентов ассоциации (коэффициентов сопряжения) при большем количестве признаков связано с расчетами по аналогичной матрице соответствующего порядка.