Примеры дифференциально-диагностических сред. Дифференциально- диагностические среды Дифференциально диагностические среды микробиология

Классификация питательных сред производится по их составу и назначению

1.По составу питательные среды делятся на простые и сложные

Различают группу сред общего назначения - простых. К этой группе относят мясо-пептонный бульон (простой питательный бульон), мясо-пептонный агар {простой питательный агар), питательный желатин. Эти среды применяются для выращивания многих патогенных микробов. Среды общего назначения, или простые питательные среды, готовятся обычно из гидролизатов с добавлением пептона и хлористого натрия. Их используют также как основу для приготовления сложных сред.

Также по составу выделяют белковые, безбелковые и минеральные среды. 2. По происхождению среды разделяют на искусственные и естественные (природные ).

Естественные питательные среды могут содержать компоненты животного (например, кровь, сыворотка, жёлчь) или растительного (например, кусочки овощей и фруктов) происхождения.

3.По назначению выделяют консервирующие среды (для первичного посева и транспортировки), среды обогащения (для накопления определённой группы бактерий), среды для культивирования {универсальные простые, сложные специальные и для токсинообразования), среды для выделения и накопления (консервирующие, обогащения и элективные) и среды для идентификации (дифференциальные и элективно-дифференциальные).

Консервирующие питательные среды предупреждают отмирание патогенов и подавляют рост сапрофитов. Наибольшее применение нашли глицериновая смесь, гипертонический раствор, глицериновый консервант с LiCl 2 , раствор цитрата натрия и дезоксихолата натрия.

Среды обогащения для бактерий

Среды обогащения (например, среда Китта-Тароцци, селенитовый бульон, тиогликолевая среда) применяют для накопления определённой группы бактерий за счёт создания условий, оптимальных для одних видов и неблагоприятных для других. Наиболее часто в качестве подобных агентов используют различные красители и химические вещества - соли жёлчных кислот, тетратионат Na+, теллурит К, антибиотики, фуксин, генциановый фиолетовый, бриллиантовый зелёный и др.

Также по назначению различают среды элективные, специальные и дифференциально-диагностические.

Среды элективные (селективные, избирательные, накопления, обогащения). Принцип создания элективных питательных сред основан на удовлетворении основных биохимических и энергетических потребностей того вида микроба, для культивирования которого они предназначены, или на добавление ингибиторов, подавляющих рост сопутствующей микрофлоры. Определенный состав и концентрация питательных веществ, микроэлементов, ростовых факторов при строго определённом значении pH или добавлении ингибиторов обеспечивают оптимальные условия для выращивания одного или нескольких видов микроорганизмов. При посеве на них материала, содержащего смесь различных микробов, раньше всего будет проявляться рост того вида, для которого среда будет элективной. Примером элективных сред являются желчный бульон, селенитовый бульон, среда Плоскирева – для выращивания микробов семейства кишечных, щелочная пептонная вода – для холерного вибриона.


Желчный бульон . К МПБ добавляют 10-20% бычьей желчи. Желчь подавляет рост коков и воздушной флоры, но благоприятна для размножения сальмонелл.

Селенитовый бульон . Состоит из фосфатного бульона с добавлением натриевой соли селенита, которая является ингибитором роста кокковой флоры, кишечной палочки, но не задерживает роста сальмонелл.

Среда Плоскирева . Плотная среда, содержащая ингибиторы кишечной палочки, коков, но благоприятная для роста шигелл и сальмонелл, размножение которых не тормозится бриллиантовым зелёным и желчными солями.

Пептонная вода . Содержит 1% пептона и 0,5% хлористого натрия. Среда является элективной для холерных вибрионов, т.к. они лучше других бактерий размножаются на “голодных средах”, особенно при щелочной реакции, потому что сами выделяют кислые продукты жизнедеятельности.

Специальные среды. Необходимы для культивирования бактерий, не растущих на простых питательных средах. Для некоторых организмов к простым питательным средам необходимо добавлять углеводы, кровь и др. дополнительные питательные вещества. Примерами простых питательных сред являются сахарный бульон и сахарный агар для стрептококка (готовится соответственно из МПБ и МПА, к которым добавляется 0,5-2% глюкозы).

Для пневмококков и менингококков специальной средой являются сывороточный бульон и сывороточный агар (для приготовления сывороточного бульона смешивают 1 часть МПБ с 2 частями свежей сыворотки, для получения, сывороточного агара к расплавленному МПА добавляется 10-25% стерильной лошадиной или бычьей сыворотки).

Дифференциально-диагностические среды используют для определения видовой принадлежности исследуемого микроба, основываясь на особенностях его обмена веществ. По своему назначению дифференциально-диагностические среды разделяют следующим образом:

1. Среды для выявления протеолитической способности микробов, содержащие в своем составе молоко, желатин, кровь и т.д.

2. Среды с углеводами и многоатомными спиртами для

обнаружения различных сахаролитических ферментов.

В состав дифференциально-диагностических сред, предназначенных для выявления сахаролитических свойств и окислительно-восстановительных ферментов, вводят индикаторы: нейтральную красную, кислый фуксин, бромтимоловый синий, водный голубой с розоловой кислотой (ВР). Изменяя свою окраску при различных значениях рН, индикатор указывает на наличие фермента и расщепление введённого в среду ингредиента.

Примеры дифференциально-диагностических сред:

Среда Эндо . Состоит из МПА с добавлением 1% лактозы и обесцвеченного сульфитом натрия основного фуксина (индикатор). Среда Эндо имеет слаборозовый цвет. Используется в диагностике кишечных инфекций для дифференциации бактерий, разлагающих лактозу с образованием кислых продуктов, от бактерий, не обладающих этой способностью. Колонии лактозопозитивных микробов (кишечная палочка) имеют красный цвет вследствие восстановления фуксина. Колонии лактозонегативных микроорганизмов - сальмонелл, шигелл и др. -бесцветны.

К дифференциально-диагностическим средам относятся короткий и развёрнутый пёстрый ряд . Он состоит из сред с углеводами (среды Гисса), МПБ, молока, мясопептонной желатины.

Среды Гисса готовятся на основе пептонной воды, к которой прибавляются химически чистые моно-, ди- или полисахариды (глюкоза, лактоза, крахмал и др.).

Для обнаружения сдвигов рН в результате образования кислот и разложения углевода в среды прибавляют индикатор. При более глубоком расщеплении углеводов образуются газообразные продукты (СО 2 , СН 4 и др.), которые улавливаются при помощи поплавков - маленьких пробирочек, опущенных в среду кверху дном. Среды с углеводами могут готовиться и плотными – с добавлением 0,5-1% агар-агара. Тогда газообразование улавливается по образованию пузырьков (разрывов) в столбике среды.

На МПБ, входящем в пёстрый ряд, обнаруживают продукты, образующиеся при расщеплении аминокислот и пептонов (индол, сероводород). Сероводород обнаруживается путем помещения в МПБ после засева культуры полоски фильтровальной бумаги, пропитанной раствором уксуснокислого свинца. При расщеплении аминокислот, содержащих серу, выделяется сероводород, бумажка чернеет за счёт образования сернистого свинца. Для определения индола можно использовать сложный индикатор. Индол образуется при расщеплении триптофана, и его можно обнаружить при добавлении к культуре, выращенной на МПБ, этого индикатора. При наличии индола МПБ окрашивается в зеленый или синий цвет.

В практических бактериологических лабораториях широко применяют микро- и экспресс-методы для ориентировочного изучения биохимических свойств микроорганизмов. Для этой цели существует множество тест-систем. Наиболее часто используют систему индикаторных бумаг (СИБ). СИБы представляют из себя диски фильтровальной бумаги, пропитанные растворами сахаров или других субстратов в сочетании с индикаторами. Такие диски опускают в пробирку с выросшей в жидкой питательной среде культурой. По изменению цвета диска с субстратом судят о работе фермента. Микро-тест системы для изучения идентификации энтеробактерий представлены одноразовыми пластиковыми контейнерами со средами, содержащими различные субстраты, с добавлением индикаторов. Посев чистой культуры микроорганизмов в такие тест-системы позволяет быстро выявить способность бактерий утилизировать цитраты, глюкозу, сахарозу, выделять аммиак, индол, разлагать мочевину, лизин, фенилаланин и т.д.

Питательный агар, а также основные дифференциально-диагностические среды выпускаются в настоящее время в виде сухих препаратов, содержащих все необходимые составные части. К таким порошкам нужно добавить только воду и сварить, а затем, после разливки, простерилизовать.

1.1. Среды Эндо, Левина, Плоскирева . Используют как дифференциально-диагностические элективные среды для культивирования бактерий кишечной группы (содержит лактозу). Микроорганизмы, ферментирующие находящийся в этих средах молочный сахар (лактозу), образуют окрашенные колонии - лактозоположительные (колонии красного цвета с металлическим блеском или без блеска). Колонии микробов, не ферментирующие лактозу, бесцветные - лактозонегативные – нежно-розовые, прозрачные, пропускающие свет.

К 100 мл МПА (рН 7,6) при температуре 70°С стерильно добавляют 5 мл 20% раствора лактозы и смесь 0,5 мл насыщенного раствора основного фуксина с 1,25 мл свежеприготовленного раствора сульфата натрия.

1.2. Среды с крахмалом используют для выявления микроорганизмов, образующих амилазу. Наличие фермента определяется при добавлении к культуре несколько капель раствора Люголя

(цвет среды не изменяется). Нерасщепленный крахмал дает с этим раствором синее окрашивание.

1.3. Молоко. При росте микроорганизмов, сбраживающих лактозу, свертывается.

2. Коммерческие наборы – для изучения биохимических свойств (идентификации микроорганизмов по сахаролитической и протеолитической активности).

2.1. Среды Гисса с углеводами (глюкоза, лактоза, сахароза, арабиноза и другие) в которых выявляют ферментативную активности микроорганизмов.Под действием образующейся при расщеплении углевода кислоты индикатор изменяет окраску среды. Соломенно-желтого цвета среда при положительной реакции меняет цвет на красный или интенсивно розовый, поэтому эти среды названы «пестрый ряд». Микробы, не ферментирующие данный углевод, растут на среде, не изменяя ее цвета. Наличие газа устанавливают по образованию пузырьков в средах с агаром или по скоплению его в «поплавке» на жидких средах.

Состав: пептон - 10 г, хлорид натрия - 5 г, углевод - 10 г, реактив Андреде (фуксин)- 10 мл, вода дистиллированная до 1000 мл, рН после стерилизации 7,2-7,4.

2.2. Среды для изучения протеолитических свойств

Среды с желатином . В некоторых бактериях (холерный вибрион, стафилококк, сибиреязвенная палочка и т. д.) протеолитические ферменты выявля­ются путем разжижения желатины.

Среды с молоком. Микроорганизмы, расщепляющие казеин (молочный белок), вызывают пептонизацию молока - оно приобретает вид молочной сыворотки.

Среды с пептоном. При расщеплении пептонов могут выделяться индол, сероводород, аммиак. Их образования определяют с помощью индикаторных бумажек. Фильтровальную бумагу заранее пропитывают определенными растворами, высушивают, нарезают полосками и, после посева культуры на МПБ, помещают под пробку между нею и стенкой пробирки. После инкубации в термостате учитывают результат. Аммиак вызывает посинение лакмусовой бумажки; при выделении сероводорода на бумажке, пропитанной раствором, содержащим ацетат свинца, бикарбонат натрия, происходит образование сульфата свинца - бумажка чернеет; индол вызывает покраснение бумажки, пропитанной горячим насыщенным раствором щавелевой кислоты.

2.3. Микротесты - системы (МТС). Они представляют собой полистироловые пластины с лунками, в которых содержатся стерильные дифференциально-диагностические среды.

2.4. Системы индикаторные бумажные (СИБ) - дифференциально-диагностические среды на фильтровальной бумаге.

    Для культивирования и дифференциации анаэробных микроорганизмов: среда Вильсон-Блера . Готовят из мясо-пептонного агара, к которому добавляют глюкозу, Na 2 S0 3 , хлорид железо FeCl 2 . На этой среде возбудитель газовой гангрены образует почернение и разрыв агара. Рост происходит в глубине агара. При этом осуществляется восстановление Na 2 S0 3 в Na 2 S (сульфит натрия), который соединяясь с хлоридом железа, образует сульфат железа черного цвета. Разрыв питательной среды связан с газообразованием.

к работе № 2

Микроорганизмам, как всему живому, присущи три основные физиологические функции: питание, дыхание и размножение.

Основные понятия темы:

Колония – видимое невооруженным взглядом скопление микробов на плотной питательной среде, выросшее из одной клетки.

Колония - это потомство микробов, выросших из одной клетки. Т.к. все микробы в колонии выросли из одной клетки, они относятся к одному виду, т.е. в каждой изолированной колонии (отдельно стоящей, не сливающейся с другими колониями) содержится чистая культура.

Чистая культура – популяция микроорганизмов, состоящая из особей одного вида.

Индикация – обнаружение возбудителя в исследуемом материале (определение рода)

Идентификация – определение вида, типа, биовара, серовара, фаговара выделенной чистой культуры.

к работе № 3

Дыхание микроорганизмов – биологическое окисление субстрата с выделением необходимой для метаболизма энергии. По типу дыхания микроорганизмы делятся на 3 основные группы: аэробы могут жить только в присутствии кислорода (холерный вибрион); факультативные анаэробы могут жить при любом процентном содержании кислорода и без него (кишечная палочка); анаэробы (облигатные) – только в отсутствие кислорода (возбудители газовой гангрены). При культивировании облигатных анаэробов требуется создание особых условий анаэробиоза . При этом используют особые приборы и среды (анаэростат, эксикатор, среды тиогликолиевая, Вильсона-Блера).

С какой целью используются дифференциально-диагностические среды? Примеры и принципы их работы

Дифференциально-диагностические среды -- специальные смеси питательных веществ, применяемые для определения видовой принадлежности микробов и изучения их свойств. При росте бактерий на дифференциально-диагностических средах протекают химические процессы, обусловленные наличием у микробной клетки различных ферментов. Одни из них способны расщеплять белки, другие --углеводы, третьи -- вызывать реакции окисления и восстановления и т. д. Благодаря действию ферментов в дифференциально-диагностической среде происходят соответствующие изменения. Дифференциально-диагностические среды можно разделить на четыре основные группы.

  • 1. Среды, содержащие белок и выявляющие способность микробов расщеплять белки (протеолитические Свойства): мясо-пептонная желатина «столбиком», свернутая лошадиная или бычья сыворотка, молоко, кровяной агар. При посеве бактерий проколом в мясо-пептоннуюжелатину, «столбиком» в случае расщепления белка наблюдают разжижение среды. При посеве на среду со свернутой сывороткой расщепление белка определяют по разжижению среды и образованию углублений на ее поверхности. Расщепление микробом молока выявляется просветлением или растворением первоначально свернувшегося молока. Наличие гемолитической активности исследуемой культуры проверяют посевом ее в чашку Петри на специальный кровяной агар. В результате разрушения эритроцитов вокруг колоний (например, гемолитического стрептококка или стафилококка) образуются зоны просветления.
  • 2. Среды для выявления способности микробов расщеплять углеводы и высокоатомные спирты (Эндо среда, Левина среда, Расселла среда, Дригальского -- Конради среда, Рапопорт -- Вайнтрауба среда, Шустовой среда). Для выявления этих свойств микроорганизмов применяют также «пестрый» ряд, т. е. серию пробирок, содержащих питательные среды, включающие различные углеводы, многоатомные спирты и индикатор. В качестве индикаторов пользуются лакмусовой настойкой или бромтимоловым синим. Разложение какого-либо из углеводов с образованием кислоты выявляют по изменению цвета индикатора, образование газа-- по заполнению газом и всплыванию специального стеклянного поплавка в жидкой среде. Или применяют полужидкие Гисса среды (см.) с 0,5% агара с соответствующими сахарами и индикатором Андраде. После посева микроба на эти среды образование кислоты выявляют покраснением среды, а образование газа -- по появлению его пузырьков в агаре или по разрыву и сдвигу вверх агарового столбика. К дифференциально-диагностическим средам второй группы относят также крахмальный агар, служащий для определения способности микробов расщеплять крахмал, среду Кларка и др.
  • 3. Среды, на которых выявляется способность микробов обесцвечивать красители, добавленные к бульону: метиленовый синий, тионин, лакмус, индигокармин, нейтральный красный или другие (среда Ротбергера, среда Омелянского). К третьей группе относят также среды с нитратами, служащие для определения способности микробов восстанавливать соли азотной кислоты (нитраты) в соли азотистой кислоты (нитриты) и далее в аммиак или свободный азот.
  • 4. Среды, выявляющие способность микробов усваивать вещества, которые не усваиваются другими микробами, например среда с лимоннокислым натрием (цитратный агар Симонса) для отличия кишечной палочки, которая лишена способности ассимилировать эту среду, от других бактерий кишечной группы или среда с олеиновокислым натрием для дифференциации дифтерийной палочки от ложно дифтерийной и дифтероидов (агарЭнжеринга).

К дифференциально-диагностическим средам относят также среды для дифференциации анаэробов, теллуритовые среды для дифференциации дифтерийных бактерий, среды с мочевиной, щелочные среды (Дьедоннеагар) для культивирования холерного вибриона и др.


Для выделения чистых культур применяют оптимальные питательные среды с фиксированным рН. Большинство б! способны расти на разл пит средах, за исключением хламидий и риккетсий, к/е не растут вне ##.

ДДС – используются для изучения и идентификации отдельных групп, видов, типов б!! В их основе различные органические и неорг в-ва, при их расщеплении происходит сдвиг рН в кислую (углеводы, спирты, липиды) или щелочную (белки, мочевина…) сторону. В эти среды часто вносят разл индикаторы, позволяющих визуально оценить изменение рН. Напр, сдвиг в КИСЛУЮ сторону вызывает покраснение индикатора Андреде (в основе фуксин) или пожелтение при использовании бромтимолового синего , а при сдвиге в ЩЕЛОЧНУЮ сторону они не меняют окраски.

ДДС Эндо, Левина, Плоскирева прм для диагностики кишечных заболеваний (шигеллёзов, сальмонеллёзов). Готовятся они в чашках Петри, в основе МПА + лактоза (ферментируется только E.coli, но не патогенными мкÒ) + индикатор.

ЭНДО . Индикатор по типу индикатора Андреде, лучше держать в тёмном месте. Растущая колония E.coli вырабатывает конечные продукты → окраска красная, часто с металлическим блеском; Shigella и Salmonella → бесцветные колонии.

ЛЕВИНА . Индикатор – эозин-метилениовая синь, при рН³7 имеет цыет эозина (розовый), в кислой среде – восстанавливается метиленовый синий (цвет тёмно-синий). Колнии E.coli → окраска тёмно-синяя, Shigella и Salmonella → бесцветные колонии (под цвет среды).

ПЛОСКИРЕВА . Индикатор – нейтральный красный; рН=7 бесцветный (патогенный б!), рН<7 розово-красный (E.coli). И ещё присутствуют 2 добавки: бриллиантовый зелёный и соли жёлчных кислот. На т/й среде угнетается рост воздушной мкФ, к тому же на ней не растут многие (но не все) штаммы E.coli.

РЕССЕЛЯ . Эта среда комбинированная, готовится в пробирке, половина –скошенная часть, другая – столбик. В среду входят МПА (среда полужидкая), лактоза (1%), глюкоза (0,1%), индикаторы (розоловая к-та и водно-голубой ). При рН=7 среда окрашивается в розовый цвет (за счёт розоловой к-ты), рН<7 – в синий. Иногда добавляют бром-тимоловый синий , рН=7 – сине-зеленовытый, рН<7 – бесцветный. Рассев производят по поверхности скошенной части и уколом в глубину столбика. E.coli → среда обсцвечивается и появляются пузыри газа, Shigella и Salmonella → цв изм-ся только в столбике, а скошенная часть останется без изменений, т.к. наилучшие условия для ферментации глюкозы – анаэробные, наиболее активно она будет распадаться в столбике, образуя кисл продукты, газа не будет. У Salmonella paratyphi → то же плюс газ.

Также с Д-Д целью используют другие ферментативные свойства. Напр, «пёстрый» (цветной) РЯД ГИССА – пептонная вода и различные углеводы + индикатор (Андреде = кислый фуксин + щёлочь) и стеклянный поплавок для улавливания газа. Из углеводов наиболее часто применяют МС (глюкоза, ксилоза, арабиноза, фруктоза, манноза, галактоза), ДС (сахароза, мальтоза, лактоза), ПС (крахмал, гликоген, инулин, декстрин) и гликозиды. Среды засевают, и если мкÒ имеет соответствующий фермент, то образуются кислоты, они восстанавливают фуксин и среда приобретает красный цвет. Если при окислении углеводов выделяется СО 2 , то он скапливается в поплавке. Белки расщепляются протеолитическими ферментами до АК, а они в свою очередь распадаются до простых соед-й (СО 2 , NН 3 и др). На практике для определения этих ферментов опред-ют индол (+щавелевая кислота → краснеет) и сероводород (H 2 S) (+ уксусно-кислый Pb → чернеет).

Л актоза Г люкоза М аннит М альтоза С ахароза И ндол H 2 S

E.coli К+Г+ К+Г+ К+Г+ К+Г+ К–Г– + –

S. typhi К–Г– К+Г– К+Г– К+Г– К–Г– – +

S. paratyphi А К–Г– К+Г+ К+Г+ К+Г+ К–Г– – –

S. paratyphi В К–Г– К+Г+ К+Г+ К+Г+ К–Г– – +

Также определяют наличие ПЛАЗМОКОАГУЛАЗЫ (по свёртыванию плазмы крови), ГИАЛУРОНИДАЗЫ (по р-рению сгустка гиалуроновой кислоты в пробирке в жидкой среде), ЛЕЦИТИНАЗЫ (лецитин входит в состав # стенок, при добавлении в среду и его разрушении – ЖСА – скапливаются продукты обмена Þ помутнение; этот фермент есть у Staphylococcus aureus, а у St. epidermidis – нет).

В мясопептонный бульон добавляют 3-4% агара, доводят pH до 7,6, разливают в склянки по 100 мл и стерилизуют, как обычно, в автоклаве, сохраняя в таком виде до момента приготовления фуксинсульфитного агара. Готовят фуксинсульфитный агар в день использования. Заготовлять впрок и хранить эту среду нельзя, так как она быстро краснеет.

К 100 мл расплавленного и охлажденного до 70°С 3-4%-ного мясопептонного агара стерильно добавляют 1 г лактозы, предварительно растворив и прокипятив ее в 5 мл стерильной воды. Кроме того, сюда же добавляют 0,5 мл профильтрованного насыщенного спиртового раствора основного фуксина и 2,5 мл свежеприготовленного 10%-ного раствора сернистокислого натра. Сернистокислый натр (Na2SO3) в количестве 0,5 г растворяют в 5 мл воды и перед употреблением стерилизуют кипячением.

Можно поступить и несколько иначе. Фуксин и сульфит натрия сначала смешивают в пробирке: к 0,5 мл раствора фуксина прибавляют при встряхивании раствор сульфита натрия до тех пор, пока жидкость в пробирке не станет бесцветной или слегка розовой. И в расплавленный и несколько охлажденный агар вливают уже эту смесь. Колбу со средой тщательно встряхивают для перемешивания и среду разливают в чашки Петри. После застывания среды ее подсушивают в термостате при 37 °С в течение 30 мин.

В горячем состоянии среда должна быть слабо-розового цвета, а после остывания совершенно бесцветной. Обесцвечивание фуксина в среде Эндо вызывает введенный сернистокислый натр.

Среда Симмонса

При идентификации микробов группы коли (чтобы отличить почвенный вид Escherichia coli aёrogenes от фекального вида Escherichia coli commune) применяется цитратная среда Симмонса. В 1 л дистиллированной воды растворяют 1,5 г фосфорнокислого натра (или однозамещенного фосфорнокислого аммония), 1 г однозамещенного фосфорнокислого калия (КН2РO4), 0,2 г сернокислого магния, 2,5-3 г кристаллического лимоннокислого натрия, устанавливают pH 7,0-7,2, добавляют 2% агара и, расплавив среду, разливают ее в колбы по 100 мл. Стерилизуют в автоклаве 15 мин при 120°С.

Перед употреблением в среду необходимо добавить индикатор. Можно использовать либо бромтимолблау, либо фенолрот. Индикатор добавляют к 100 мл расплавленной среды. Бромтимолблау берут в количестве 1 мл спиртового 1,5%-ного раствора. Среда приобретает оливково-зеленый цвет. Фенолрот добавляется в количестве 2 мл 1,5%-ного спиртового раствора. Среда окрашивается в желтый цвет. После добавления индикатора среду разливают в пробирки и стерилизуют в автоклаве при 120°С в течение 15 мин.

Пестрый ряд углеводов, или среды Гисса

Для определения ферментативной способности микроорганизмов пользуются средами Гисса. В зависимости от наличия в микробной клетке того или иного фермента она способна разлагать какой-либо один из углеводов с образованием определенных продуктов разложения, поэтому в состав среды вводится какой-либо углевод: лактоза, глюкоза, маннит, сахароза и пр. Набор таких сред получил название «пестрого ряда углеводов».

Сначала готовят пептонную воду: на 1 л дистиллированной воды берут 10 г пептона и 5 г химически чистой поваренной соли, кипятят до растворения пептона, фильтруют через бумажный фильтр (фильтрат должен быть совершенно прозрачным) и устанавливают pH 7,2-7,4. Затем к 100 мл пептонной воды добавляют по 0,5 г одного из применяемых углеводов и по 1 мл индикатора Андреде.

В состав индикатора Андреде входит: 0,5 г кислого фуксина, 16 мл 1 н. раствора едкого натра (NaOH) и 100 мл дистиллированной воды. При необходимости индикатор можно готовить заранее и сохранять его в темном месте, предварительно про-кипятив при 100 °С в течение 15 мин. После введения индикатора среды разливают по пробиркам с поплавками и стерилизуют в кипятильнике Коха трижды по 30 мин. По окончании стерилизации поплавки должны быть погружены в среду, в противном случае пробирка не может быть использована. Среды Гисса с реактивом Андреде имеют соломенно-желтый цвет без розового оттенка. При развитии в среде микроорганизмов последние, разлагая сахар с образованием кислоты, вызывают изменение реакции. А так как в кислой среде индикатор Андреде краснеет, то это и является свидетельством, что микроорганизм использует данный сахар для своей жизнедеятельности. Отсутствие покраснения, наоборот, свидетельствует об отсутствии в ферментативном комплексе изучаемого микроба фермента, разлагающего имеющийся в среде углевод.