Презентация к уроку по геометрии (11 класс) на тему: Симметрия в пространстве. Симметрия в пространстве

Цели урока :

Познакомить учащихся с понятием симметрия в пространстве.

Рассмотреть понятие симметрия, используя содержательные связи математики, физики, химии и биологии.

Рассмотреть следующие виды симметрии: центральная, осевая, зеркальная, поворотная, винтовая.

Повышать у учащихся мотивацию изучения математики.

Развивающие:

1. Содействовать развитию познавательной активности.

2. Содействовать развитию воображения.

3. Содействовать развитию коммуникативных умений, умения работать в команде.

Воспитательные:

Содействовать развитию эстетического восприятия учащихся.

Содействовать расширению кругозора у учащихся.

Вид урока : изучение нового материала.

За 2 недели до проведения этого урока учитель должен разделить класс на команды. Каждая команда готовит сообщение по одной из следующих тем: «Симметрия», «Симметрия у растений», «Симметрия у животных», «Симметрия у человека», «Симметрия в химии». Разделение на команды происходит с учетом наличия интереса учащихся к тем или иным предметам. Интерес определяется учителем на основе личных наблюдений и бесед с учащимися.

Каждая команда получает ориентировочный план, в соответствии с которым необходимо подготовить сообщение по предложенной теме. Те пункты, которые указаны в плане, обязательно должны быть освещены.

Например, команда, которая готовит рассказ о симметрии у растений, получает следующий план:

1) вертикальная симметрия;

поворотная симметрия;

винтовая симметрия.

На первой неделе подготовки учащиеся сами ищут необходимую литературу и отбирают материал. В результате у каждого участника команды должен появиться конспект. Если у команды возникают затруднения с поиском материала, то учитель предлагает учащимся список литературы. Кроме того, учитель проводит консультации для тех команд, которые самостоятельно не справляются с подготовкой к уроку.

Можно предложить учащимся разделить обязанности внутри команды. Тогда кто-то из учащихся будет отвечать за поиск и подбор материала, кто-то - за изготовление (поиск) наглядных пособий, кто-то - за изложение материала на уроке, кто-то - за разработку и создание презентации. Однако все учащиеся должны знать материал, с которым работает их команда, и иметь конспект. После выступления каждой команды учитель может задать каждому ее участнику небольшой вопрос по изложенному материалу.

Команды выступают по очереди. Во время выступления команды все остальные учащиеся слушают и заполняют следующую таблицу:

Ход урока :

1. Создание учебной доминанты:

Учащимся предлагается следующее задание: заполните свободные части рисунков числами и фигурами, учитывая вид симметрии.

2. Вводное слово учителя:

Среди бесконечного многообразия форм живой и неживой природы в изобилии встречаются такие совершенные образцы, чей вид неизменно привлекает наше внимание. К числу таких образцов относятся некоторые кристаллы и микробы, многие животные и растения. Мы постоянно любуемся прелестью каждого отдельного цветка, мотылька или раковины и всегда пытаемся проникнуть в тайну красоты. Нас удивляет и архитектура пчелиных сот, и расположение семян на шляпке подсолнечника, и винтообразное расположение листьев на стебле растения.

Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все ее виды - от простейших до самых сложных.

Симметрия (от греческого symmetria - "соразмерность") - соразмерность, полное соответствие в расположении частей целого относительно средней линии, центра; строгая правильность в расположении, размещении чего-либо.

3. Каждая команда выступает со своим докладом.

4. Заключительное слово учителя:

По справедливому замечанию Г.Вейля, у истоков симметрии лежит математика. Вместе с тем симметрия воспринимается нами как элемент красоты вообще и красоты природы в частности. Сегодня мы рассмотрели симметрию с точки зрения математики, биологии, физики и химии. Кроме этого, симметрия широко используется в искусстве, в частности, в архитектуре.

5. Домашнее задание: найти и сделать копии (ксерокопии, фотографии и др.) изображений, раскрывающих тему «Симметрия в архитектуре нашего города». (Можно будет устроить выставку, используя полученные работы).

6. Теперь каждый из вас напишет небольшой синквейн (белый стих), посвященный теме нашего урока. Правила написания синквейна: в первой строке пишется тема (существительное), во второй строке: описание темы двумя прилагательными, в третьей строке: описание действий (три глагола), в четвертой строке: фраза из 4 слов, выражающих отношение к теме, пятая строка: слово, которое раскрывает суть темы, отмеченной в первой строке.

Пособия: таблицы и наглядные пособия по биологии, химии, физике; презентации в Power Point.

. Правильные многогранники.

Определение . Выпуклый многогранник называется правильным , если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число рёбер.

Достаточно легко доказать, что правильных многогранников существует всего 5: правильный тетраэдр, правильный гексаэдр, правильный октаэдр, правильный икосаэдр, правильный додекаэдр. Этот поразительный факт дал повод древним мыслителям соотнести правильные многогранники и первоэлементы бытия.

Есть много интересных приложений теории многогранников. Одним из выдающихся результатов в данной области является теорема Эйлера , справедливая не только для правильных, но и для всех выпуклых многогранников.

Теорема : для выпуклых многогранников справедливо соотношение: Г + В – Р = 2 , где В – число вершин, Г – число граней, Р – число ребер.

Название многогранника

Количество граней (Г)

Количество вершин (В)

Количество рёбер (Р)

Первоэлемент бытия

тетраэдр

гексаэдр

икосаэдр

додекаэдр

Вселенная

четырехугольная пирамида

n – угольная пирамида

треугольная призма

n – угольная призма

Правильные многогранники обладают многими интересными свойствами. Одним из самых поразительных свойств является их двойственность: если соединить отрезками центры граней правильного гексаэдра (куба), то получится правильный октаэдр; и, наоборот, если соединить отрезками центры граней правильного октаэдра, то получится куб. Аналогично, двойственны правильные икосаэдр и додекаэдр. Правильный тетраэдр двойственен сам себе, т.е. если соединить отрезками центры граней правильного тетраэдра, то снова получится правильный тетраэдр.

. Симметрия в пространстве.

Определение . Точки А и В называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АВ . Точка О считается симметричной самой себе.

Определение . Точки А и В называются симметричными относительно прямой а (ось симметрии), если прямая а АВ и перпендикулярна этому отрезку. Каждая точка прямой а

Определение . Точки А и В называются симметричными относительно плоскости β (плоскости симметрии), если плоскость β проходит через середину отрезка АВ и перпендикулярна этому отрезку. Каждая точка плоскости β считается симметричной самой себе.

Определение . Точка (прямая, плоскость) называются центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры.

Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. Центр, ось и плоскости симметрии многогранника называются элементами симметрии этого многогранника.

Пример . Правильный тетраэдр:

– не имеет центра симметрии;

– имеет три оси симметрии – прямые, проходящие через середины двух противоположных рёбер;

Имеет шесть плоскостей симметрии – плоскости, проходящие через ребро перпендикулярно противоположному (скрещивающемуся с первым) ребру тетраэдра.

Вопросы и задачи

    Сколько центров симметрии имеет:

а) параллелепипед;

б) правильная треугольная призма;

в) двугранный угол;

г) отрезок;

    Сколько осей симметрии имеет:

а) отрезок;

б) правильный треугольник;

    Сколько плоскостей симметрии имеет:

а) правильная четырёхугольная призма, отличная от куба;

б) правильная четырёхугольная пирамида;

в) правильная треугольная пирамида;

    Сколько и каких элементов симметрии имеют правильные многогранники:

а) правильный тетраэдр;

б) правильный гексаэдр;

в) правильный октаэдр;

г) правильный икосаэдр;

д) правильный додекаэдр?

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

(Всего 10 фото)

Спонсор поста: Программа для скачивания музыки ВКонтакте : Новая версия программы «Лови в контакте» предоставляет возможность легко и быстро скачивать музыку и видео, размещенные пользователями, со страниц самой известной социальной сети vkontakte.ru.

1. Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

3. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

4. Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

5. Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.


Дайте паре обманщиков доску, косилки и спасительную темноту, и вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.


Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

9. Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

10. Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.

§ 1 Что такое симметрия

Цитатой этого урока послужит высказывание известного ученого, создателя кибернетики Норберта Винера, которое очень точно выражает все то, о чем сегодня пойдет речь.

«Высшее назначение математики - находить красоту, гармонию и порядок в хаосе, который нас окружает».

Симметрия один из законов обеспечивающих гармонию вселенной, о ней мы и поведем сегодня речь и расширим те понятия, которые были введены на уроках планиметрии.

В повседневном языке слово симметрия употребляется в двух значениях. В одном смысле симметричное означает нечто, обладающее хорошим соотношением пропорций, уравновешенное, а симметрия обозначает тот вид согласованности отдельных частей, который объединяет их в единое целое. Красота тесно связана с симметрией. Об этом говорит, например, в своей книге о пропорциях Поликлет - ваятель, скульптуры которого служили предметом восхищения древних за их гармоничное совершенство. Образ весов является естественным связующим звеном, которое подводит ко второму смыслу слова симметрия, употребляемому в наше время: зеркальная симметрия - симметрия левого и правого, столь заметная в строении тел у высших животных и человека.

Зеркальная симметрия выступает как частный случай геометрического понятия симметрии, относящегося к таким операциям, как отражение или вращение.

Пифагорейцы считали наиболее совершенными геометрическими фигурами на плоскости — окружность, а в пространстве - сферу в силу их полной поворотной симметрии.

Симметрия в широком или узком смысле является той идеей, посредством которой человек на протяжении веков пытается постичь и создать порядок, красоту и совершенство. Так свойства пространства и времени ведут к симметрии, к закономерности в природе как проявлению ее гармонии

§ 2 Симметрия относительно точки

В планиметрии мы рассматривали фигуры, симметричные относительно точки и относительно прямой. В стереометрии рассматривают симметрию относительно точки, прямой и плоскости.

Точки А и А1 называются симметричными относительно точки О (центра симметрии), если О - середина отрезка АА1. Точка О считается симметричной самой себе. Примером центральной симметрии может послужить цветок или узор

§ 3 Симметрия относительно прямой

Точки А и А1 называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе.

Примером такой симметрии могут послужить не только прелестные бабочки, но и даже целые здания, такие как

корпус Московского государственного университета им. Ломоносова,

Храм Христа Спасителя,

мавзолей- мечеть Тадж-Махал.

§ 4 Симметрия относительно плоскости

В пространственной геометрии добавим симметрию относительно плоскости.

Точки А и А1 называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка плоскости α считается симметричной самой себе.

Изучая стереометрию, можно также говорить о центре, оси и плоскости симметрии фигуры.

Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

На рисунках вы сейчас можете увидеть прямоугольный параллелепипед, а так же его центр симметрии, ось симметрии, плоскость симметрии.

Параллелепипед, не являющийся прямоугольным, но являющийся прямой призмой, имеет плоскость (или плоскости, если его основание - ромб), ось и центр симметрии.

§ 5 Асимметрия

Фигура может иметь один или несколько центров симметрии (осей, плоскостей симметрии). Например, куб имеет только один центр симметрии и несколько осей и плоскостей симметрии. Существуют фигуры, имеющие бесконечно много центров, осей или плоскостей симметрии. Простейшими из таких фигур являются прямая и плоскость. И наоборот, существуют такие фигуры, которые не имеют центров, осей или плоскостей симметрии. В этом случае говорят еще об одном математическом понятии как асимметрия, которое обозначает отсутствие симметрии. Сегодня биологи и психологи, химики и врачи пытаются сообща справиться с загадками симметрии и разгадать тайны левого и правого. Каждый день мы смотрим в зеркало, но редко задумываемся о том, что в отражении правая рука превращается в левую. Зачем природа создала и дублировала некоторые функции полушарий, руки, ноги, глаза, а рот у человека один. Удивительно при всей нашей симметрии мы ассиметричны. Современные компьютерные технологии позволяют увидеть, каким бы был человек только из левых половин лица или из правых. Результат ошеломляет большинство увидевших получившиеся портреты. Право и левополушарные лица оказываются непохожими между собой. Оглянитесь вокруг, может быть, и вы увидите симметрию и асимметрию вокруг и восхититесь ею.

  1. Геометрия. 10 – 11 классы: учебник для общеобразоват. учреждений: базовый и профил. уровни / [ Л. С. Атанасян, В. Ф. Бутузов, С.Б. Кадомцев и др.]. – 22-е изд. – М. : Просвещение, 2013. – 255 с. : ил. – (МГУ - в школе)
  2. Учебно – методическое пособие в помощь школьному учителю Составитель Яровенко В.А. Поурочные разработки по геометрии к учебному комплекту Л. С. Атанасяна и др. (М. : Просвещение) 10 класс
  3. Рабинович Е. М. Задачи и упражнения на готовых чертежах. 10 – 11 классы. Геометрия. – М. : Илекса, 2006 . – 80 с.
  4. М. Я Выгодский Справочник по элементарной математике М. : АСТ Астрель, 2006. - 509с.
  5. Аванта+. Энциклопедия для детей. Том 11. Математика 2-е изд., перераб. - М.: Мир энциклопедий Аванта+: Астрель 2007. - 621 с. Ред. коллегия: М. Аксёнова, В. Володин, М. Самсонов