Излучение после ядерного взрыва. Ядерное оружие и его поражающие факторы

С применением энергии атома человечество стало разрабатывать ядерное оружие. Оно отличается рядом особенностей и воздействий на окружающую среду. Существуют разные степени поражения при помощи ядерного оружия.

Чтобы выработать правильное поведение при возникновении подобной угрозы, необходимо ознакомиться с особенностями развития ситуации после взрыва. Характеристики ядерного оружия, его виды и поражающие факторы будут рассмотрены далее.

Общее определение

На занятиях по предмету основ (ОБЖ) одним из направлений обучения является рассмотрение особенностей ядерного, химического, бактериологического оружия и его характеристик. Также изучаются закономерности возникновения подобных опасностей, их проявление и способы защиты. Это в теории позволяет снизить количество человеческих жертв при поражении оружием массового уничтожения.

Ядерным называется оружие взрывного типа, действие которого основано на энергии цепного деления тяжелых ядер изотопов. Также поражающая сила может появляться при термоядерном синтезе. Эти два типа оружия отличаются силой действия. Реакции деления при одной массе будет в 5 раз слабее, чем при термоядерных реакциях.

Первая ядерная бомба было разработана в США в 1945 году. Первый удар при помощи этого оружия был произведен 5.08.1945 года. Бомба была сброшена на город Хиросиму в Японии.

В СССР первую ядерную бомбу разработали в 1949 году. Ее взорвали в Казахстане, вне населенных пунктов. В 1953 году СССР вела Это оружие в 20 раз превосходило по своей силе то, которое было сброшено на Хиросиму. При этом размер этих бомб был одинаковым.

Характеристика ядерного оружия на ОБЖ рассматривается с целью определения последствий и способов выжить при ядерной атаке. Правильное поведение населения при таком поражении может спасти больше человеческих жизней. Условия, которые складываются после взрыва, зависят от того, в каком месте он произошел, какую мощность имел.

Ядерное оружие превышает по мощности, разрушающим действиям обычные авиационные бомбы в несколько раз. Если оно применяется против войск противника, поражение носит обширный характер. При этом наблюдаются огромные человеческие потери, разрушается техника, сооружения и прочие объекты.

Характеристики

Рассматривая краткую характеристику ядерного оружия, следует перечислить его основные виды. Они могут содержать в себе энергию разного происхождения. К ядерному оружию относятся боеприпасы, их носители (доставляют боеприпасы к цели), а также оборудование для управления взрывом.

Боеприпасы могут быть ядерные (основаны на реакциях деления атомов), термоядерные (основаны на реакциях синтеза), а также комбинированные. Чтобы измерить мощность оружия, применяется тротиловый эквивалент. Эта величина характеризует его массу, которая бы понадобилась для создания взрыва аналогичной мощности. Тротиловый эквивалент измеряется в тоннах, а также мегатоннах (Мт) или килотоннах (кт).

Мощность боеприпасов, действие которых основано на реакциях деления атомов, может составлять до 100 кт. Если же при изготовлении оружия применялись реакции синтеза, оно может иметь мощность 100-1000 кт (до 1 Мт).

Размер боеприпасов

Наибольшей разрушающей силы можно достичь при использовании комбинированных технологий. Характеристики ядерного оружия этой группы характеризуются развитием по схеме «деление → синтез → деление». Их мощность может превышать 1 Мт. В соответствии с этим показателем различают следующие группы оружия:

  1. Сверхмалые.
  2. Малые.
  3. Средние.
  4. Крупные.
  5. Сверхкрупные.

Рассматривая краткую характеристику ядерного оружия, следует отметить, что цели применения его могут быть разными. Существуют ядерные бомбы, которые создают подземные (подводные), наземные, воздушные (до 10 км) и высотные (более 10 км) взрывы. От этой характеристики зависит масштаб разрушений и последствия. При этом поражения могут быть вызваны разными факторами. После взрыва их образуется несколько видов.

Виды взрывов

Определение и характеристика ядерного оружия позволяет сделать вывод об общем принципе его действия. От того, где была взорвана бомба, будут зависеть последствия.

Происходит на расстоянии 10 км над землей. При этом его светящаяся область не соприкасается с земной или водной поверхностью. Столб пыли отделен от облака взрыва. Облако, появившееся в результате, движется по ветру, постепенно рассеивается. Такой тип взрыва может нанести значительный ущерб войску, разрушить здания, уничтожить самолеты.

Взрыв высотного типа выглядит как шарообразная светящаяся область. Ее размер будет больше, чем при наземном применении этой же бомбы. После взрыва шарообразная область превращается в кольцевое облако. При этом нет пылевого столба и облака. Если взрыв произойдет в ионосфере, он впоследствии будет гасить радиосигналы, нарушать работу радиооборудования. Радиационное заражение наземных участков практически не наблюдается. Применяется этот тип взрыва для уничтожения авиационной или космической вражеской техники.

Характеристика ядерного оружия и очага ядерного поражения при наземном взрыве отличается от предыдущих двух видов взрывов. В этом случае светящаяся область соприкасается с землей. На месте взрыва образуется воронка. Образуется большое облако пыли. В него вовлекается большое количество грунта. Радиоактивные продукты выпадают вместе с землей из облака. местности будет большим. При помощи такого взрыва разрушаются укрепленные объекты, уничтожаются войска, которые находятся в убежищах. Окружающие районы сильно заражаются радиацией.

Взрыв также может быть подземным. Светящаяся область может не наблюдаться. Колебания почвы после взрыва похожи на землетрясение. Образуется воронка. Столб грунта с радиационными частицами взметается в воздух и распространяется по местности.

Также взрыв может быть произведен над или под водой. В этом случае вместо грунта в воздух вырываются пары воды. Они несут в себе радиационные частицы. Заражение местности в этом случае также будет сильным.

Поражающие факторы

определяется при помощи тех или иных поражающих факторов. Они могут иметь различное воздействие на объекты. После взрыва можно наблюдать следующие воздействия:
  1. Заражение наземной части радиацией.
  2. Ударная волна.
  3. Электромагнитный импульс (ЭМИ).
  4. Проникающая радиация.
  5. Световое излучение.

Одним из самых опасных поражающих факторов является ударная волна. Она обладает огромным энергетическим запасом. Поражение вызывает как прямой удар, так и косвенные факторы. Ими, например, могут быть летящие осколки, предметы, камни, грунт и т. д.

Проявляется в оптическом диапазоне. Оно включает в себя ультрафиолетовые, видимые и инфракрасные лучи спектра. Основным поражающим действием светового излучения являются высокая температура и ослепление.

Проникающей радиацией является поток из нейтронов, а также гамма-лучей. В этом случае живые организмы получают высокую может возникнуть лучевая болезнь.

Ядерный взрыв сопровождают также электрополя. Импульс распространяется на дальние расстояния. Он выводит из строя линии связи, аппаратуру, электроснабжение, радиосвязь. При этом оборудование может даже воспламениться. Может возникнуть поражение людей электрическим током.

Рассматривая ядерное оружие, его виды и характеристики, следует также назвать еще один поражающий фактор. Это поражающее действие радиации на местности. Такой тип факторов характерен для реакций деления. В этом случае чаще всего бомбу взрывают невысоко в воздухе, на поверхности земли, под грунтом и на воде. В этом случае местность сильно заражается выпадающими частицами грунта или воды. Процесс заражения может длиться до 1,5 суток.

Ударная волна

Характеристики ударной волны ядерного оружия определяются областью, в которой произошел взрыв. Она может быть подводной, воздушной, сейсмовзрывной и отличается рядом параметров в зависимости от вида.

Воздушная взрывная волна представляет собой область, в которой воздух резко сжимается. Удар при этом распространяется быстрее, чем скорость звука. Он поражает людей, технику, здания, вооружение на больших расстояниях от эпицентра взрыва.

Наземная взрывная волна теряет часть своей энергии на образование сотрясений грунта, образование воронки и испарение земли. Чтобы разрушить укрепления воинских частей, применяется бомба наземного действия. Жилые малоукрепленные сооружения больше разрушаются при воздушном взрыве.

Рассматривая кратко характеристики поражающих факторов ядерного оружия, следует отметить степень тяжести поражений в зоне ударной волны. Самые тяжелые последствия со смертельным исходом возникают в зоне, где давление составляет 1 кгс/см². Поражения средней тяжести наблюдаются в зоне давления 0,4-0,5 кгс/см². Если же ударная волна имеет мощность 0,2-0,4 кгс/см², поражения небольшие.

При этом значительно меньший ущерб личному составу наносится, если люди в момент воздействия ударной волны находились в положении лежа. Еще меньше подвергаются поражениям люди, находящиеся в окопах, траншеях. Хорошим уровнем защиты в этом случае обладают закрытые помещения, которые расположены под землей. Защитить личный состав от поражения ударной волной могут правильно сконструированные инженерные сооружения.

Военная техника также выходит из строя. При небольшом давлении могут наблюдаться незначительные обжатия корпусов ракет. Также выходят из строя некоторые их приборы, автомобили, прочие транспортные и подобные им средства.

Световое излучение

Рассматривая общую характеристику ядерного оружия, следует рассмотреть такой поражающий фактор, как световое излучение. Оно проявляется в оптическом диапазоне. Световое излучение распространяется в пространстве благодаря появлению светящейся области при ядерном взрыве.

Температура светового излучения может достигать миллионов градусов. Этот поражающий фактор проходит три степени развития. Их исчисление производится десятками сотых секунды.

Светящееся облако в момент взрыва набирает температуру до миллионов градусов. Затем в процессе его исчезновения нагрев снижается до тысяч градусов. В начальной стадии энергии еще недостаточно для образования большого уровня тепла. Оно возникает в первой фазе взрыва. 90 % световой энергии вырабатывается во второй период.

Время воздействия светового излучения определяется мощностью самого взрыва. Если будет взорван сверхмалый боеприпас, этот поражающий фактор может длиться всего несколько десятых долей секунды.

При задействовании малого снаряда световое излучение будет действовать 1-2 с. Продолжительность этого проявления при взрыве среднего боеприпаса составляет 2-5 с. Если же будет задействована сверхкрупная бомба, световой импульс может длиться более 10 с.

Поражающую способность в представленной категории определяет световой импульс взрыва. Он будет тем больше, чем выше мощность бомбы.

Поражающее воздействие светового излучения проявляется появлением ожогов на открытых и закрытых участках кожи, слизистых. При этом может возникнуть возгорание различных материалов, оборудования.

Силу воздействия светового импульса ослабляют облачность, различные объекты (здания, леса). Поражение личного состава может быть вызвано пожарами, которые возникают после взрыва. Чтобы защитить его от поражения, людей переводят в подземные сооружения. Здесь же хранят боевую технику.

На поверхностных объектах применяют отражатели, увлажняют, обсыпают снегом горючие материалы, пропитывают их огнестойкими составами. Применяются специальные защитные комплекты.

Проникающая радиация

Понятие ядерного оружия, характеристика, поражающие факторы позволяют предпринять соответствующие меры для предотвращения больших человеческих, технических потерь при возникновении взрыва.

Световое излучение и ударная волна являются основными поражающими факторами. Однако не менее сильное воздействие после взрыва имеет проникающая радиация. Она распространяется в воздухе на расстояние до 3 км.

Гамма-лучи и нейтроны проходят через живую материю и способствуют ионизации молекул и атомов клеток различных организмов. Это ведет к развитию лучевой болезни. Источником этого поражающего фактора являются процессы синтеза и деления атомов, которые наблюдаются в момент ее применения.

Мощность этого воздействия измеряют в радах. Доза, которая поражает живые ткани, характеризуется типом, мощностью и видом ядерного взрыва, а также удаленностью объекта от эпицентра.

Изучая характеристики ядерного оружия, способы воздействия и защиты от него, следует рассмотреть подробно степени проявления лучевой болезни. Существует ее 4 степени. При легкой форме (первая степень) доза радиации, полученной человеком, составляет 150-250 рад. Болезнь излечивается в течение 2 месяцев в стационарном порядке.

Вторая степень возникает при дозе облучения до 400 рад. В этом случае меняется состав крови, выпадают волосы. Требуется активное лечение. Выздоровление наступает спустя 2,5 месяца.

Тяжелая (третья) степень заболевания проявляется при облучении до 700 рад. Если лечение проходит благополучно, человек может выздороветь спустя 8 месяцев стационарного лечения. Остаточные явления проявляются гораздо дольше.

При четвертой стадии доза облучения составляет свыше 700 рад. Человек погибает через 5-12 дней. Если радиация превысит предел 5000 рад, личный состав погибает спустя несколько минут. Если организм был ослаблен, человек даже при малых дозах радиационного облучения тяжело переносит лучевую болезнь.

Защитой от проникающей радиации могут быть специальные материалы, которые сдерживают разные типы лучей.

Электромагнитный импульс

При рассмотрении характеристик основных поражающих факторов ядерного оружия следует также изучить особенности электромагнитного импульса. В процессе взрыва, особенно на большой высоте, создаются обширные зоны, через которые не может проходить радиосигнал. Они существуют достаточно недолгое время.

В линиях электропередачи, прочих проводниках возникает при этом повышенное напряжение. Появление этого поражающего фактора вызвано взаимодействием нейтронов и гамма-лучей во фронтальной части ударной волны, а также вокруг этой области. В результате электрические заряды разделяются, образуя электромагнитные поля.

Действие при наземном взрыве электромагнитного импульса определяется на расстоянии нескольких километров от эпицентра. При воздействии бомбы на расстоянии от земли более 10 км электромагнитный импульс может возникнуть на расстоянии 20-40 км от поверхности.

Действие этого поражающего фактора направлено в большей степени на различное радиооборудование, аппаратуру, электрические приборы. В результате в них образуются высокие напряжения. Это приводит к разрушению изоляции проводников. Может возникнуть пожар или поражение людей током. Больше всего подвержены проявлениям электромагнитного импульса различные системы сигнализации, связи и управления.

Чтобы защитить технику от представленного разрушающего фактора, потребуется экранировать все проводники, аппаратуру, военные приспособления и т. д.

Характеристика поражающих факторов ядерного оружия позволяет принять своевременные меры по предотвращению разрушительного действия различных воздействий после взрыва.

местности

Характеристика поражающих факторов ядерного оружия была бы неполной без описания воздействия радиоактивного заражения местности. Оно проявляется как в недрах земли, так и на ее поверхности. Заражение затрагивает атмосферу, водные ресурсы и все прочие объекты.

Радиоактивные частицы выпадают на местности из облака, которое образуется в результате взрыва. Оно под действием ветра перемещается в определенном направлении. При этом высокий уровень радиации может определяться не только в непосредственной близости от эпицентра взрыва. Заражение может распространяться на десятки или даже сотни километров.

Действие этого поражающего фактора может длиться на протяжении нескольких десятков лет. Наибольшую интенсивность радиационное заражение местности может иметь при наземном взрыве. Его площадь распространения может значительно превышать действие ударной волны или иных поражающих факторов.

Не имеют запаха, цвета. Их скорость распада не может быть ускорена никакими методами, которые сегодня доступны человечеству. При наземном типе взрыва большое количество грунта поднимается в воздух, образуется воронка. Потом частицы земли с продуктами радиационного распада оседают на прилегающие территории.

Зоны заражения определяются интенсивностью взрыва, мощностью излучения. Замер радиации на местности проводится спустя сутки после взрыва. На этот показатель влияют характеристики ядерного оружия.

Зная его характеристики, особенности и способы защиты, можно предотвратить разрушающие последствия взрыва.

воздушная ударная волна, световое излучение, проникающая радиация, электромагнитный импульс, радиоактивное заражение местности (только при наземном (подземном) взрыве).

Распределение общей энергии взрыва зависит от типа боеприпаса и вида взрыва.
При взрыве в атмосфере до 50% энергии расходуется на образование воздушной ударной волны, 35% - на световое излучение, 4% - на проникающую радиацию,1% - на электромагнитный импульс. Еще около 10% энергии выделяется не в момент взрыва, а в течение длительного времени при распаде продуктов деления взрыва. При наземном взрыве осколки деления ядер выпадают на землю, где и происходит их распад. Так происходит радиоактивное заражение местности.

Воздушная ударная волна - это область резкого сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Источником возникновения воздушной волны являются высокое давление в области взрыва (миллиарды атмосфер) и температура, достигающая миллионов градусов.

Раскаленные газы, стремясь расшириться, сильно сжимают и нагревают окружающие слои воздуха, в результате чего от центра взрыва распространяется волна сжатия или ударная волна. Вблизи центра взрыва скорость распространения воздушной ударной волны в несколько раз превышает скорость звука в воздухе.
С увеличением расстояния от центра взрыва скорость снижается и ударная волна трансформируется в звуковую волну.


Наибольшее давление в сжатой области наблюдается на передней ее кромке, которая называется фронтом ударной воздушной волны.

Разность между нормальным атмосферным давлением и давлением на передней кромке ударной волны составляет величину избыточного давления.
Непосредственно за фронтом ударной волны образуются сильные потоки воздуха, скорость которых достигает нескольких сотен километров в час. (Даже на расстоянии 10 км от места взрыва боеприпаса мощностью 1 Мт скорость движения воздуха более 110 км/час.)
При встрече с преградой создается нагрузка скоростного напора или нагрузка
торможения, которая усиливает разрушающее действие воздушной ударной волны.
Действие воздушной ударной волны на объекты носит довольно сложный характер и зависит от многих причин: угла падения, реакции объекта, расстояния от центра взрыва и др.

Когда фронт ударной волны достигает передней стенки объекта, происходит
ее отражение. Давление в отраженной волне повышается в несколько раз,
что и определяет степень разрушения данного объекта.


Для характеристики разрушений зданий, сооружений приняты
четыре степени разрушения: полные, сильные, средние и слабые.

  • Полные разрушения - когда разрушаются все основные элементы здания, в том числе и несущие конструкции. Подвальные помещения могут частично сохраняться.

  • Сильные разрушения - когда разрушаются несущие конструкции и перекрытия верхних этажей, деформируются перекрытия нижних этажей. Использование зданий невозможно, а восстановление нецелесообразно.

  • Средние разрушения - когда разрушаются крыши, внутренние перегородки и частично перекрытия верхних этажей. После расчистки часть помещений нижних этажей и подвалы могут быть использованы. Восстановление зданий возможно при проведении капитального ремонта.

  • Слабые разрушения - когда разрушаются оконные и дверные заполнения,кровля и легкие внутренние перегородки. Возможны трещины в стенах верхних этажей. Здание может эксплуатироваться после текущего ремонта.

Степень разрушения техники (оборудования):

  • Полные разрушения - объект не может быть восстановлен.

  • Сильные повреждения - повреждения, которые могут быть устранены капитальным ремонтом в заводских условиях.

  • Средние повреждения - повреждения, устраняемые силами ремонтных мастерских.

  • Слабые повреждения - это повреждения, существенно не влияющие на
    использование техники и устраняются текущим ремонтом.

При оценке воздействия воздушной ударной волны на людей и животных различают непосредственные и косвенные поражения.

Непосредственные поражения возникают в результате действия избыточного
давления и скоростного напора, в результате чего человек может быть отброшен, травмирован.


Косвенные поражения могут быть нанесены в результате действия обломков
зданий, камней, стекла и других предметов, летящих под воздействием скоростного напора.

Воздействие ударной волны на людей характеризуется легкими,
средними, тяжелыми и крайне тяжелыми поражениями.

  • Легкие поражения наступают при избыточном давлении 20-40 кПа. Они характеризуются временным нарушением слуха, легкими контузиями, вывихами, ушибами.

  • Поражения средней тяжести возникают при избыточном давлении 40-60кПа. Они проявляются в контузиях головного мозга, повреждении органов слуха, кровотечении из носа и ушей, вывихах конечностей.

  • Тяжелые поражения возможны при избыточных давлениях от 60 до 100кПа. Они характеризуются сильными контузиями всего организма, потерей сознания, переломами; возможны повреждения внутренних органов.

  • Крайне тяжелые поражения наступают при избыточном давлении свыше100 кПа. У людей отмечаются травмы внутренних органов, внутреннее кровотечение, сотрясение мозга, сильные переломы. Эти поражения часто приводят к смертельному исходу.

Защитой от ударной волны являются убежища. На открытой местности действие ударной волны снижается различными углублениями, препятствиями.
Рекомендуется упасть на землю, головой по направлению от взрыва, лучше в углубление или за складку местности, голову закрыть руками, в идеале чтобы не было открытых участков кожи, которые могут подвергнуться воздействию светового излучения.

Световое излучение представляет собой поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра.
Источником является светящаяся область взрыва, состоящая из нагретых до
высокой температуры паров конструкционных материалов боеприпаса и воздуха, а при наземных взрывах и испарившегося грунта.

Размеры и формы светящейся области зависят от мощности и вида взрыва.
При воздушном взрыве — это шар, при наземном - полусфера.

Максимальная температура поверхности светящейся области примерно 5700-7700°С. Когда температура снижается до 1700 °С, свечение прекращается.

Результатом действия светового излучения может быть оплавление, обугливание, большие температурные напряжения в материалах, а также воспламенение и возгорание.

Поражение людей световым импульсом выражается в появлении ожогов открытых и защищенных одеждой участков тела, а также в поражении глаз.
Независимо от причин ожогов, поражение делится на четыре
степени:


  • Ожоги первой степени выражаются поверхностным поражением кожи: покраснением, припухлостью и болезненностью. Они не представляют опасности.

  • Ожоги второй степени характеризуются образованием пузырей, наполненных жидкостью. Требуется специальное лечение. При поражении до 50-60% поверхности
    тела обычно наступает выздоровление.

  • Ожоги третьей степени характеризуются омертвлением кожи и росткового слоя, а также появлением язв.

  • Ожоги четвертой степени сопровождаются омертвлением кожи и поражением более глубоких тканей (мышц, сухожилий и костей).

Поражение ожогами третьей и четвертой степени значительной
части тела может привести к смертельному исходу.

Поражение глаз проявляется в ослеплении от 2 до 5 минут днем, до 30 и
более минут ночью, если человек смотрел в сторону взрыва. Вплоть до полной слепоты, и ожогов глазного дна.

Защитой от светового излучения может служить любая непрозрачная преграда.


Проникающая радиация представляет собой
гамма-излучение и поток нейтронов, испускаемых из зоны ядерного взрыва.

Время действия проникающей радиации составляет 15-20 секунд. Поражающее действие проникающей радиации на материалы характеризуется поглощенной дозой, мощностью дозы и потоком нейтронов.
Радиус поражающего действия проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и воздушной ударной волны.
Однако на больших высотах, в стратосфере и космосе — это основной фактор
поражения.
Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, элементах радиотехнической, оптической и другой аппаратуры за счет нарушения кристаллической решетки вещества, а также в результате различных физико-химических процессов под воздействием ионизирующих излучений.

Поражающее действие на людей характеризуется дозой излучения.

Степень тяжести лучевого поражения зависит от поглощенной дозы, а также
от индивидуальных особенностей организма и его состояния в момент облучения.


Доза облучения в 1 Зв (100 бэр) не приводит в большинстве случаев к серьезному поражению человеческого организма, а 5 Зв (500 бэр) - вызывает очень тяжелую форму лучевой болезни.

Для мощности боеприпаса до 100кт радиусы поражения воздушной ударной волны и проникающей радиации примерно равны, а для боеприпасов мощностью более 100 кт зона действия воздушной ударной волны значительно перекрывает зону действия проникающей радиации в опасных дозах.


Из этого можно сделать вывод, что при взрывах средних и больших мощностей не требуется специальной защиты от проникающей радиации, так как защитные сооружения, предназначенные для укрытия от ударной волны, в полной мере защищают и от проникающей радиации.

Для взрывов сверхмалых и малых мощностей, а также для нейтронных боеприпасов, где зоны поражения проникающей радиацией значительно выше, необходимо предусматривать защиту от проникающей радиации.

Защитой от проникающей радиации служат различные материалы, ослабляющие-излучение и поток нейтронов.


Радиоактивное заражение местности

Его источником являются продукты деления ядерного горючего, радиоактивные изотопы, образующиеся в грунте и других материалах под воздействием нейтронов- наведенная активность, а также не разделившаяся часть ядерного заряда.

Радиоактивные продукты взрыва испускают три вида излучения: альфа-частицы, бета- частицы и гамма излучение.

Поскольку при наземном взрыве в огненный шар вовлекается значительное
количество грунта и других веществ, то при охлаждении эти частицы выпадают
в виде радиоактивных осадков. По мере перемещения облака, по его следу
происходит выпадение радиоактивных осадков, и, таким образом, на земле
остается радиоактивный след. Плотность заражения в районе взрыва и по
следу движения радиоактивного облака убывает по мере удаления от центра
взрыва.
Форма следа может быть самой разнообразной, в зависимости от конкретных условий. Конфигурация следа реально может быть определена только после окончания выпадения радиоактивных частиц на землю.

Местность считается зараженной при уровнях радиации 0,5 P/ч и более.

В связи с естественным процессом распада радиоактивность уменьшается,
особенно резко в первые часы после взрыва. Уровень радиации на один час
после взрыва является основной характеристикой при оценке радиоактивного заражения местности.

Радиоактивное поражение людей и животных на следе радиоактивного облака может вызываться внешним и внутренним облучением.
Последствием облучения может быть лучевая болезнь.


  • Лучевая болезнь первой степени возникает при однократной дозе облучения
    100-200 Р (0,026-0,052 Кл/кг). Скрытый период болезни может длиться
    две-три недели, после чего появляется недомогание, слабость, головокружение, тошнота. В крови уменьшается количество лейкоцитов. Через несколько дней эти явления проходят.

    В большинстве случаев специального лечения не требуется.


  • Лучевая болезнь второй степени возникает при дозе облучения 200-400
    Р (0,052-0,104 Кл/кг). Скрытый период продолжается около недели. Затем наблюдается общая слабость, головные боли, повышение температуры, расстройство функций нервной системы, рвота. Количество лейкоцитов снижается наполовину.

    При активном лечении выздоровление наступает через полтора-два месяца.
    Возможны смертельные исходы - до 20% пораженных.


  • Лучевая болезнь третьей степени наступает при дозах облучения 400-600
    Р (0,104-0,156 Кл/кг). Скрытый период длится несколько часов. Отмечается общее тяжелое состояние, сильные головные боли, озноб, повышение температуры до 40 °С, потеря сознания (иногда - резкое возбуждение). Болезнь требует длительного лечения (6-8 месяцев). Без лечения до 70% пораженных погибают.

  • Лучевая болезнь четвертой степени возникает при однократной дозе
    облучения свыше 600 Р (0,156 Кл/кг). Болезнь сопровождается затемнением сознания, лихорадкой, резким нарушением водно-солевого обмена и заканчивается смертельным исходом через 5-10 суток.

Лучевые болезни у животных возникают при более высоких дозах облучения.

Внутреннее облучение людей и животных обусловливается радиоактивным распадом изотопов, попавших в организм с воздухом, водой или пищей.

Значительная часть изотопов (до 90%) выводится из организма в течение
нескольких дней, а остальные всасываются в кровь и разносятся по органам
и тканям.

Некоторые изотопы распределяются в организме почти равномерно (цезий),
а другие концентрируются в определенных тканях. Так, в костных тканях
отлагаются источники a-частиц (радий, уран, плутоний); b-частиц
(стронций, иттрий) и g-излучений (цирконий). Эти элементы очень слабо
выводятся из организма.


Изотопы йода преимущественно откладываются в щитовидной железе; изотопы лантана, церия и прометия - в печени и почках и т.п.

Электромагнитный импульс- вызывает возникновение электрических и магнитных полей в результате воздействия гамма-излучения ядерного взрыва на атомы объектов окружающей среды и образования потока электронов и положительно заряженных ионов. Степень поражения электромагнитным импульсом зависит от мощности и вида взрыва. Наиболее выражены поражения от электромагнитного импульса при высотных (внеатмосферных) взрывах ядерных боеприпасов, когда площадь поражения может составлять тысячи квадратных километров. Воздействие электромагнитного импульса может привести к сгоранию чувствительных электронных и электрических элементов, имеющих большие антенны, повреждению полупроводниковых, вакуумных приборов, конденсаторов, а также к серьезным нарушениям работы цифровых и контрольных устройств. Таким образом, воздействие электромагнитного импульса может привести к нарушению работы аппаратов связи, электронно-вычислительной техники и т. п., что в условиях войны отрицательно скажется на работе штабов и других органов управления ГО. Электромагнитный им пульс не имеет выраженного поражающего действия на людей.
Характеристика тактических и оперативно-тактических средств ядерного нападения вооруженных сил НАТО

Средства ядерного нападения

Дальность стрельбы (полета), км

Мощность ядерного боеприпаса, кт

Время для занятия подготовленной ОП и открытия огня

Удаление позиционного района от переднего края, км

Сухопутные войска

«Деви Крокет» (120- и 155-мм)

155-мм гаубица

203,2-мм гаубица

1 мин - САУ;

20-30 мин на мех. тяге

НУРС «Литтл Джон»

НУРС «Онест Джон»

УРС «Ланс»

УРС «Капрал»

Дивизион 6-10 ч

УРС «Сержант»

УРС «Першинг»

Около 30 мин


А теперь представьте сотни и тысячи взрывов!

Будет или нет ядерная зима? Вопрос остается открытым, но хочется верить, что экспериментальной проверки не будет! Не забывайте о потенциально разрушенных хим. заводах, атомных электростанциях, плотинах! Плюс отсутствие незараженной воды, электричества, тепла, чистой пищи, жилья, мед помощии. То что ни одно техническое средство, исключая допотопные авто, паровозы и часть военного транспорта не будет работать и перемещаться, можно будет выбираться только пешком по зараженной местности.

Живые позавидуют мертвым!

Ядерный взрыв сопровождается выделением огромного количества энергии, поэтому по разрушающему и поражающему действию он в сотни и тысячи раз может превосходить взрывы самых крупных авиационных бомб, снаряжённых обычными взрывчатыми веществами.

Поражение войск ядерным оружием происходит на больших площадях и носит массовый характер. Ядерное оружие позволяет в короткие сроки наносить противнику крупные потери в живой силе и боевой технике, разрушать сооружения и другие объекты.

Поражающими факторами ядерного взрыва являются:

  1. Ударная волна;
  2. Световое излучение;
  3. Проникающая радиация;
  4. Электромагнитный импульс (ЭМИ);
  5. Радиоактивное заражение.

Ударная волна ядерного взрыва – один из его основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна – в воздухе, воде или грунте, ее называют соответственно: воздушной, подводной, сейсмовзрывной.

Воздушной ударной волной называют область резкого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. Обладая большим запасом энергии, ударная волна ядерного взрыва способна наносить поражения людям, разрушать различные сооружения, вооружение и военную технику и другие объекты на значительных расстояниях от места взрыва.

При наземном взрыве фронт ударной волны представляет собой полусферу, при воздушном взрыве в первый момент – сферу, затем полусферу. Кроме того, при наземном и воздушном взрыве часть энергии расходуется на образование сейсмовзрывных волн в грунте, а также на испарение грунта и образование воронки.

Для объектов большой прочности, например, убежищ тяжелого типа, радиус зоны разрушающего действия ударной волны будет наибольшим при наземном взрыве. Для таких малопрочных объектов, как жилые здания, наибольшим радиус разрушения будет при воздушном взрыве.

Поражение людей воздушной ударной волной может возникать в результате непосредственного и косвенного воздействия (летящими обломками сооружений, падающими деревьями, осколками стекла, камнями грунтом).

В зоне, где избыточное давление во фронте ударной волны превышает 1 кгс/см 2 , имеют место крайне тяжелые и смертельные поражения открыто расположенного личного состава, в зоне с давлением 0,6…1 кгс/см 2 – тяжелые поражения, при 0,4…0,5 кгс/см 2 – поражения средней тяжести и при 0,2…0,4 кгс/см 2 – легкие поражения.

Радиусы зон поражения личного состава в положении лежа в значительно меньше, чем в положении стоя. При расположении людей в траншеях, щелях радиусы зон поражения уменьшаются примерно в 1,5 — 2 раза.

Лучшими защитными свойствами обладают закрытые помещения подземного и котлованного типа (блиндажи, убежища), уменьшая радиус поражения ударной волной не менее, чем в 3 – 5 раз.

Таким образом, надежной защитой личного состава от ударной волны являются инженерные сооружения.

Ударная волна выводит из строя и вооружение. Так, слабые повреждения ЗУР наблюдаются при избыточном давлении ударной волны 0,25 – 0,3 кгс/см 2 . При слабых повреждениях у ракет происходит местное обжатие корпуса, могут выйти из строя отдельные приборы и агрегаты. К примеру, при взрыве боеприпаса мощностью 1 Мт ракеты выходят из строя на расстоянии 5…6 км, автомобили и подобная им техника – 4…5 км.

Световое излучение ядерного взрыва представляет собой электромагнитное излучение оптического диапазона, включающее ультрафиолетовую (0,01 — 0,38 мк), видимую (0,38 — 0,77 мк) и инфракрасную (0,77-340 мк) области спектра.

Источником светового излучения является светящаяся область ядерного взрыва, температура которой вначале достигает нескольких десятков миллионов градусов, а затем остывает и в своем развитии проходит три фазы: начальную, первую и вторую.

В зависимости от мощности взрыва длительность начальной фазы светящейся области составляет доли миллисекунды, первой – от нескольких миллисекунд до десятков и сотен миллисекунд, а второй – от десятых долей секунды до десятков секунд. За время существования светящейся области температура внутри ее изменяется от миллионов до нескольких тысяч градусов. Основная доля энергии светового излучения (до 90%) приходится на вторую фазу. Время существования светящейся области возрастает с увеличением мощности взрыва. При взрывах боеприпасов сверхмалого калибра (до 1 кт) свечение продолжается десятые доли секунды; малого (от 1 до 10 кт) – 1 … 2 с; среднего (от 10 до 100 кт) – 2…5 с; крупного (от 100 кт до 1 Мт) – 5 … 10 с; сверхкрупного (свыше 1 Мт) – несколько десятков секунд. Размеры светящейся области также возрастают с увеличением мощности взрыва. При взрывах боеприпасов сверхмалого калибра максимальный диаметр светящейся области составляет – 20 … 200 м, малого – 200 … 500, среднего – 500 … 1000 м, крупного – 1000 … 2000 м и сверхкрупного – несколько километров.

Основным параметром, определяющим поражающую способность светового излучения ядерного взрыва, является световой импульс.

Световой импульс – количество энергии светового излучения, падающей за все время излучения на единицу площади неподвижной неэкранированной поверхности, расположенной перпендикулярно к направлению прямого излучения, без учета отраженного излучения. Световой импульс измеряется в джоулях на квадратный метр (Дж/м 2) или в калориях на квадратный сантиметр (кал/см 2); 1 кал/см 2 4,2*10 4 Дж/м 2 .

Световой импульс уменьшается с увеличением расстояния до эпицентра взрыва и зависит от вида взрыва и состояния атмосферы.

Поражение людей световым излучением выражается в появлении ожогов различных степеней открытых и защищенных обмундированием участков кожи, а также в поражении глаз. Например, при взрыве мощностью 1 Мт (U = 9 кал/см 2) поражаются открытые участки кожи человека, вызывая ожог 2-ой степени.

Под воздействием светового излучения возможно возгорание различных материалов и возникновение пожаров. Световое излучение в значительной степени ослабляется облачностью, зданиями населенных пунктов, лесом. Однако, в последних случаях поражение личного состава может быть вызвано за счет образования обширных зон пожаров.

Надежной защитой от светового излучения личного состава и боевой техники являются подземные инженерные сооружения (блиндажи, убежища, перекрытые щели, котлованы, капониры).

Защита от светового излучения в подразделениях включает выполнение следующих мероприятий:

повышение коэффициента отражения светового излучения поверхностью объекта (применение материалов, красок, обмазок светлых тонов, различных металлических отражателей);

повышение стойкости и защитных свойств объектов к действию светового излучения (применение увлажнения, снежных обсыпок, использование огнестойких материалов, покрытие глиной и известью, пропиткой чехлов и тентов огнестойкими составами);

проведение противопожарных мероприятий (расчистка районов расположения личного состава и боевой техники от легко воспламеняющихся материалов, подготовка сил и средств для тушения пожаров);

использование индивидуальных средств защиты, таких как общевойсковой комплексный защитный костюм (ОКЗК), общевойсковой защитный комплект (ОЗК), импрегнированное обмундирование, защитные очки и т.п.

Таким образом, ударная волна и световое излучение ядерного взрыва являются его основными поражающими факторами. Своевременное и умелое использование простейших укрытий, рельефа местности, инженерных фортификационных сооружений, индивидуальных средств защиты, профилактических мероприятий позволит ослабить, а в ряде случаев исключить воздействие ударной волны и светового излучения на личный состав, вооружение и военную технику.

Проникающая радиация ядерного взрыва представляет собой поток γ- излучения и нейтронов. Нейтронное и γ-излучение различны по своим физическим свойствам, а общим для них является то, что они могут распространяться в воздухе во все стороны на расстояния до 2,5 – 3 км. Проходя через биологическую ткань, γ -кванты и нейтроны ионизируют атомы и молекулы, входящие в состав живых клеток, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению заболевания – лучевой болезни. Схема распространения гамма-излучения ядерного взрыва показана на рисунке 1.

Рис. 1. Схема распространения гамма-излучения ядерного взрыва

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

Поражающее действие проникающей радиации характеризуется дозой излучения, т.е. количеством энергии ионизирующих излучений, поглощенной единицей массы облучаемой среды, измеряемой в радах (рад ).

Нейтроны и γ-излучение ядерного взрыва действуют на любой объект практически одновременно. Поэтому общее поражающее действие проникающей радиации определяется суммированием доз γ-излучения и нейтроно, где:

  • суммарная доза излучения, рад;
  • доза γ- излучения, рад;
  • доза нейтронов, рад (ноль у символов доз показывает, что они определяются перед защитной преградой).

Доза излучения зависит от типа ядерного заряда, мощности и вида взрыва, а также от расстояния до центра взрыва.

Проникающая радиация является одним из основных поражающих факторов при взрывах нейтронных боеприпасов и боеприпасов деления сверхмалой и малой мощности. Для взрывов большой мощности радиус поражения проникающей радиацией значительно меньше радиусов поражения ударной волной и световым излучением. Особо важное значение проникающая радиация приобретает в случае взрывов нейтронных боеприпасов, когда основная доля дозы излучения образуется быстрыми нейтронами.

Поражающее воздействие проникающей радиации на личный состав и на состояние его боеспособности зависит от полученной дозы излучения и времени, прошедшего после взрыва, что вызывает лучевую болезнь. В зависимости от полученной дозы излучения различают четыре степени лучевой болезни.

Лучевая болезнь I степени (легкая) возникает при суммарной дозе излучения 150 – 250 рад. Скрытый период продолжается 2 – 3 недели, после чего появляется недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание лейкоцитов и тромбоцитов. Лучевая болезнь I степени излечивается в течение 1,5 – 2 месяцев в стационаре.

Лучевая болезнь II степени (средняя) возникает при суммарной дозе излучения 250 – 400 рад. Скрытый период длится около 2 – 3 недель, затем признаки заболевания выражаются более ярко: наблюдается выпадение волос, меняется состав крови. При активном лечении наступает выздоровление через 2 — 2,5 месяца.

Лучевая болезнь III степени (тяжелая) наступает при дозе излучения 400 – 700 рад. Скрытый период составляет от несколько часов до 3 недель.

Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6 – 8 месяцев, но остаточные явления наблюдаются значительно дольше.

Лучевая болезнь IV степени (крайне тяжелая) наступает при дозе излучения свыше 700 рад, которая является наиболее опасной. Смерть наступает через 5 – 12 дней, а при дозах, превышающих 5000 рад, личный состав утрачивает боеспособность через несколько минут.

Тяжесть поражения в известной мере зависит от состояния организма до облучения и его индивидуальных особенностей. Сильное переутомление, голодание, болезнь, травмы, ожоги повышают чувствительность организма к воздействию проникающей радиации. Сначала человек теряет физическую работоспособность, а затем – умственную.

При больших дозах излучения и потоках быстрых нейтронов утрачивают работоспособность комплектующие элементы систем радиоэлектроники. При дозах более 2000 рад стекла оптических приборов темнеют, окрашиваясь в фиолетово – бурый цвет, что снижает или полностью исключает возможность их использования для наблюдения. Дозы излучения 2 – 3 рад приводят в негодность фотоматериалы, находящиеся в светонепроницаемой упаковке.

Защитой от проникающей радиации служат различные материалы, ослабляющие γ-излучение и нейтроны. При решении вопросов защиты следует учитывать разницу в механизмах взаимодействия γ-излучения и нейтронов со средой, что определяет выбор защитных материалов. Излучение сильнее всего ослабляется тяжелыми материалами, имеющими высокую электронную плотность (свинец, сталь, бетон). Поток нейтронов лучше ослабляется легкими материалами, содержащими ядра легких элементов, например водорода (вода, полиэтилен).

В подвижных объектах для защиты от проникающей радиации необходима комбинированная защита, состоящая из легких водородосодержащих веществ и материалов с высокой плотностью. Средний танк, например, без специальных противорадиационных экранов имеет кратность ослабления проникающей радиации равную примерно 4, что недостаточно для обеспечения надежной защиты экипажа. Поэтому вопросы защиты личного состава должны решаться выполнением комплекса различных мероприятий.

Наибольшей кратностью ослабления от проникающей радиации обладают фортификационные сооружения (перекрытые траншеи – до 100, убежища – до 1500).

В качестве средств, ослабляющих действие ионизирующих излучений на организм человека, могут быть использованы различные противорадиационные препараты (радиопротекторы).

Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, на вооружении и военной технике и других объектах.

Основной причиной генерации ЭМИ длительностью менее 1с считают взаимодействие γ-квантов и нейтронов с газом во фронте ударной волны и вокруг него. Важное значение имеет также возникновение асимметрии в распределении пространственных электрических зарядов, связанных с особенностями распространения излучения и образования электронов.

При наземном или низком воздушном взрыве γ-кванты, испускаемые из зоны протекания ядерных реакций, выбивают из атомов воздуха быстрые электроны, которые летят в направлении движения квантов со скоростью, близкой к скорости света, а положительные ионы (остатки атомов) остаются на месте. В результате такого разделения электрических зарядов в пространстве образуются элементарные и результирующие электрические и магнитные поля, которые и представляют собой ЭМИ.

При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии порядка нескольких километров от центра взрыва.

При высотном ядерном взрыве (Н > 10 км) могут возникать поля ЭМИ в зоне взрыва и на высотах 20 – 40 км от поверхности земли. ЭМИ в зоне такого взрыва возникает за счет быстрых электронов, которые образуются в результате взаимодействия квантов ядерного взрыва с материалом оболочки боеприпаса и рентгеновского излучения с атомами окружающего разреженного воздушного пространства.

Испускаемое из зоны взрыва излучение в направлении поверхности земли начинает поглощаться в более плотных слоях атмосферы на высотах 20 – 40 км, выбивая из атомов воздуха быстрые электроны. В результате разделения и перемещения положительных и отрицательных зарядов в этой области и в зоне взрыва, а также при взаимодействии зарядов с геомагнитным полем земли возникает электромагнитное излучение, которое достигает поверхности земли в зоне радиусом до нескольких сот километров. Продолжительность ЭМИ – несколько десятых долей секунды.

Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Когда амплитуда ЭМИ не слишком большая, то возможно срабатывание средств защиты (плавких вставок, грозоразрядников) и нарушение работоспособности линий.

Кроме того, высотный взрыв способен создать помехи в работе средств связи на очень больших площадях.

Защита от ЭМИ достигается экранированием как линий энергоснабжения и управления, так и собственно аппаратуры, а также созданием такой элементной базы радиотехнических средств, которая устойчива к воздействию ЭМИ. Все наружные линии, например, должны быть двухпроводными, хорошо изолированными от земли, с малоинерционными разрядниками и плавкими вставками. Для защиты чувствительного электронного оборудования целесообразно использовать разрядники с небольшим порогом зажигания. Важное значение имеют правильная эксплуатация линий, контроль исправности средств защиты, а также организация обслуживания линий в процессе эксплуатации.

Радиоактивное заражение местности, приземного слоя атмосферы, воздушного пространства, воды и других объектов возникает в результате выпадения радиоактивных веществ из облака ядерного взрыва при его перемещении под воздействием ветра.

Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва, но и на расстоянии десятков и даже сотен километров от него. В отличие от других поражающих факторов, действие которых проявляется в течение относительно короткого времени после ядерного взрыва, радиоактивное заражение местности может быть опасным на протяжении нескольких лет и десятков лет после взрыва.

Наиболее сильное заражение местности происходит от наземных ядерных взрывов, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией. Сами радиоактивные вещества и испускаемые ими ионизирующие излучения не имеют цвета, запаха, а скорость их распада не может быть измерена какими – либо физическими или химическими методами.

Зараженную местность по пути движения облака, где выпадают радиоактивные частицы диаметром более 30 – 50 мкм, принято называть ближним следом заражения. На больших расстояниях – дальний след – небольшое заражение местности, которое в течение длительного времени не влияет на боеспособность личного состава. Схема формирования следа радиоактивного облака наземного ядерного взрыва представлена на рисунке 2.

Рис. 2. Схема формирования следа радиоактивного облака наземного ядерного взрыва

Источниками радиоактивного заражения при ядерном взрыве являются:

  • продукты деления (осколки деления) ядерных взрывчатых веществ;
  • радиоактивные изотопы (радионуклиды), образующиеся в грунте и др. материалах под воздействием нейтронов – наведенная активность;
  • не разделившаяся часть ядерного заряда.

При наземном ядерном взрыве светящаяся область касается поверхности земли и образуется воронка выброса. Значительное количество грунта, попавшего в светящуюся область, плавится, испаряется и перемешивается с радиоактивными веществами.

По мере остывания светящейся области и ее подъема пары конденсируются, образуя радиоактивные частицы разных размеров. Сильный прогрев грунта и приземного слоя воздуха способствует образованию в районе взрыва восходящих потоков воздуха, которые формируют пылевой столб («ножку» облака). Когда плотность воздуха в облаке взрыва станет равной плотности окружающего воздуха, подъем облака прекращается. При этом, в среднем за 7 – 10 мин. облако достигает максимальной высоты подъема, которую иногда называют высотой стабилизации облака.

Границы зон радиоактивного заражения с разной степенью опасности для личного состава можно характеризовать как мощностью дозы излучения (уровнем радиации) на определенное время после взрыва, так и дозой до полного распада радиоактивных веществ.

По степени опасности зараженную местность по следу облака взрыва принято делить на 4 зоны.

Зона А (умеренного заражения), площадь которой составляет 70 – 80% площади всего следа.

Зона Б (сильного заражения). Дозы излучения на внешней границе этой зоны Д внешн = 400 рад, а на внутренней — Д внутр. = 1200 рад. На долю этой зоны приходится примерно 10% площади радиоактивного следа.

Зона В (опасного заражения). Дозы излучения на ее внешней границе Д внешн = 1200 рад, а на внутренней — Д внутр = 4000 рад. Эта зона занимает примерно 8 – 10% площади следа облака взрыва.

Зона Г (чрезвычайно опасного заражения). Дозы излучения на ее внешней границе более 4000 рад.

На рисунке 3 показана схема нанесения прогнозируемых зон заражения при одиночном наземном ядерном взрыве. Синим цветом наносится зона Г, зеленым – Б, коричневым – В, черным – Г.

Рис. 3. Схема нанесения прогнозируемых зон заражения при одиночном ядерном взрыве

Потери людей, вызванные действием поражающих факторов ядерного взрыва, принято делить на безвозвратные исанитарные.

К безвозвратным потерям относят погибших до оказания медицинской помощи, а к санитарным – пораженных, поступивших для лечения в медицинские подразделения и учреждения.

Поражающее действие ядерного взрыва определяется механическим воздействием ударной волны, тепло­вым воздействием светового излуче­ния, радиационным воздействием про­никающей радиации и радиоактивного заражения. Для некоторых элементов объектов поражающим фактором явля­ется электромагнитное излучение (электромагнитный импульс) ядерного взрыва.

Распределение энергии между по­ражающими факторами ядерного взрыва зависит от вида взрыва и ус­ловий, в которых он происходит. При взрыве в атмосфере примерно 50 % энергии взрыва расходуется на обра­зование ударной волны, 30 - 40% - на световое излучение, до 5 % - на проникающую радиацию и электромаг­нитный импульс и до 15 % -на радио­активное заражение.

Для нейтронного взрыва характер­ны те же поражающие факторы, одна­ко несколько по-иному распределяется энергия взрыва: 8 - 10% - на образо­вание ударной волны, 5 - 8 % - на световое излучение и около 85 % рас­ходуется на образование нейтронного и гамма-излучений (проникающей ра­диации).

Действие поражающих факторов ядерного взрыва на людей и элементы объектов происходит не одновременно и различается по длительности воз­действия, характеру и масштабам по­ражения.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва являются:

Ударная волна

Световое излучение

Проникающая радиация

Радиоактивное заражение местности

Электромагнитный импульс

Рассмотрим их.

8.1) Ударная волна

В большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает.

За первые 2 сек ударная волна проходит около 1000 м, за 5 сек - 2000 м, за 8 сек - около 3000 м.

Это служит обоснованием норматива N5 ЗОМП "Действия при вспышке ядерного взрыва": отлично - 2 сек, хорошо - 3 сек, удовлетврительно-4 сек.

Крайне тяжелые контузии и травмы у людей возникают при избыточном давлении более 100 кПа (1 кгс/см 2). Отмечаются разрывы внутренних органов, переломы костей, внутрен­ние кровотечения, сотрясение мозга, длительная потеря сознания. Разры­вы наблюдаются в органах, содержа­щих большое количество крови (пе­чень, селезенка, почки), наполненных газом (легкие, кишечник) или имею­щие полости, наполненные жидкостью (желудочки головного мозга, мочевой и желчный пузыри). Эти травмы мо­гут привести к смертельному исходу.

Тяжелые контузии и травмы воз­можны при избыточных давлениях от 60 до 100 кПа (от 0,6 до 1,0 кгс/см 2). Они характеризуются сильной конту­зией всего организма, потерей созна­ния, переломами костей, кровотечени­ем из носа и ушей; возможны повреж­дения внутренних органов и внутрен­ние кровотечения.

Поражения средней тяжести возни­кают при избыточном давлении 40 - 60 кПа (0,4-0,6 кгс/см 2). При этом могут быть вывихи конечностей, кон­тузия головного мозга, повреждение органов слуха, кровотечение из носа и ушей.

Легкие поражения наступают при избыточном давлении 20 - 40 кПа (0,2-0,4 кгс/см 2). Они выражаются в скоропроходящих нарушениях функ­ций организма (звон в ушах, голово­кружение, головная боль). Возможны вывихи, ушибы.

Избыточные давления во фронте ударной волны 10 кПа (0,1 кгс/см 2) и менее для людей и животных, распо­ложенных вне укрытий, считаются безопасными.

Радиус поражения обломками зда­ний, особенно осколками стекол, раз­рушающихся при избыточном давле­нии более 2 кПа (0,02 кгс/см 2) может превышать радиус непосредственного поражения ударной волной.

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. При отсутст­вии убежищ используются противорадиационные укрытия, подземные вы­работки, естественные укрытия и рель­еф местности.

Механическое воздейст­вие ударной волны. Характер разрушения элементов объекта (пред­метов) зависит от нагрузки, создавае­мой ударной волной, и реакции пред­мета на действие этой нагрузки.

Общую оценку разрушений, вы­званных ударной волной ядерного взрыва, принято давать по степени тя­жести этих разрушений. Для большин­ства элементов объекта, как правило, рассматриваются три степени-сла­бое, среднее и сильное разрушение. Для жилых и промышленных зданий берется обычно четвертая степень- полное разрушение. При слабом раз­рушении, как правило, объект не вы­ходит из строя; его можно эксплуати­ровать немедленно или после незна­чительного (текущего) ремонта. Средним разрушением обычно называют разрушение главным образом второ­степенных элементов объекта. Основ­ные элементы могут деформироваться и повреждаться частично. Восстанов­ление возможно силами предприятия путем проведения среднего или капи­тального ремонта. Сильное разруше­ние объекта характеризуется сильной деформацией или разрушением его основных элементов, в результате чего объект выходит из строя и не может быть восстановлен.

Применительно к гражданским и промышленным зданиям степени разрушения характеризуются следующим состоянием конструкции.

Слабое разрушение. Разрушаются оконные и дверные заполнения и лег­кие перегородки, частично разрушает­ся кровля, возможны трещины в сте­нах верхних этажей. Подвалы и ниж­ние этажи сохраняются полностью. Находиться в здании безопасно, и оно может эксплуатироваться после про­ведения текущего ремонта.

Среднее разрушение проявляется в разрушении крыш и встроенных эле­ментов- вутренних перегородок, окон, а также в возникновении трещин в стенах, обрушении отдельных участ­ков чердачных перекрытий и стен верх­них этажей. Подвалы сохраняются. После расчистки и ремонта может быть использована часть помещений нижних этажей. Восстановление зда­ний возможно при проведении капи­тального ремонта.

Сильное разрушение характеризу­ется разрушением несущих конструк­ций и перекрытий верхних этажей, об­разованием трещин в стенах и дефор­мацией перекрытий нижних этажей. Использование помещений становится невозможным, а ремонт и восстановле­ние чаще всего нецелесообразным.

Полное разрушение. Разрушаются все основные элементы здания, вклю­чая и несущие конструкции. Использо­вать здания невозможно. Подвальные помещения при сильных и полных раз­рушениях могут сохраняться и после разбора завалов частично использо­ваться.

Наибольшие разрушения получают наземные здания, рассчитанные на собственный вес и вертикальные на­грузки, более устойчивы заглубленные и подземные сооружения. Здания с ме­таллическим каркасом средние разру­шения получают при 20 - 40 кПа, а полные - при 60-80 кПа, здания кир­пичные - при 10 - 20 и 30 - 40, здания деревянные - при 10 и 20 кПа соответ­ственно. Здания с большим количест­вом проемов более устойчивы, так как в первую очередь разрушаются запол­нения проемов, а несущие конструкции при этом испытывают меньшую на­грузку. Разрушение остекления в зда­ниях происходит при 2-7 кПа.

Объем разрушений в городе зави­сит от характера строений, их этаж­ности и плотности застройки. При плотности застройки 50 % давление ударной волны на здания может быть меньше (на 20 - 40 %), чем на здания, стоящие на открытой местности, на таком же расстоянии от центра взры­ва. При плотности застройки менее 30 % экранирующее действие зда­ний незначительно и не имеет практи­ческого значения.

Энергетическое, промыш­ленное и коммунальное обо­рудование может иметь следую­щие степени разрушений.

Слабые разрушения: деформации трубопроводов, их повреждения на стыках; повреждения и разрушении контрольно-измерительной аппарату­ры; повреждение верхних частей ко­лодцев на водо-, тепло- и газовых се­тях; отдельные разрывы на линии электропередач (ЛЭП); повреждения станков, требующих замены электро­проводки, приборов и других повреж­денных частей.

Средние разрушения: отдельные разрывы и деформации трубопрово­дов, кабелей; деформации и повреж­дения отдельных опор ЛЭП; деформа­ция и смещение на опорах цистерн, разрушение их выше уровня жидкости;

повреждения станков, требующих ка­питального ремонта.

Сильные разрушения: массовые разрывы трубопроводов, кабелей и разрушения опор ЛЭП и другие раз­рушения, которые нельзя устранить при капитальном ремонте.

Наиболее стойки подземные энер­гетические сети. Газовые, водопровод­ные и канализационные подземные се­ти разрушаются только при наземных взрывах в непосредственной близости от центра при давлении ударной вол­ны 600 - 1500 кПа. Степень и харак­тер разрушения трубопроводов зависят от диаметра и материала труб, а также от глубины прокладки. Энергети­ческие сети в зданиях, как правило, выходят из строя при разрушении эле­ментов застройки. Воздушные линии связи и электропроводок получают сильные разрушения при 80 - 120 кПа, при этом линии, проходящие в ради­альном направлении от центра взры­ва, повреждаются в меньшей степени, чем линии, проходящие перпендику­лярно к направлению распространения ударной волны.

Станочное оборудование предприя­тий разрушается при избыточных давлениях 35 - 70 кПа. Измерительное оборудование - при 20 - 30 кПа, а наиболее чувствительные приборы мо­гут повреждаться и при 10 кПа и даже 5 кПа. При этом необходимо учиты­вать, что при обрушении конструкций зданий также будет разрушаться обо­рудование.

Для гидроузлов наиболее опасны­ми являются надводный и подводный взрывы со стороны верхнего бьефа. Наиболее устойчивые элементы гид­роузлов - бетонные и земляные пло­тины, которые разрушаются при дав­лении более 1000 кПа. Наиболее слабые - гидрозатворы водосливных плотин, электрическое оборудование и различные надстройки.

Степень разрушений (поврежде­ний) транспортных средств зависит от их положения относитель­но направления распространения ударной волны. Средства транспорта, расположенные бортом к направлению действия ударной волны, как прави­ло, опрокидываются и получают боль­шие повреждения, чем машины, обра­щенные к взрыву передней частью. Загруженные и закрепленные средст­ва транспорта имеют меньшую сте­пень повреждения. Более устойчивы­ми элементами являются двигатели. Например, при сильных повреждениях двигатели автомашин повреждаются незначительно, и машины способны двигаться своим ходом.

Наиболее устойчивы к воздействию ударной волны морские и речные суда и железнодорожный транспорт. При воздушном или надводном взрыве по­вреждение судов будет происходить главным образом под действием воз­душной ударной волны. Поэтому по­вреждаются в основном надводные части судов - палубные надстройки, мачты, радиолокационные антенны и т. д. Котлы, вытяжные устройства и другое внутреннее оборудование по­вреждаются затекающей внутрь удар­ной волной. Транспортные суда полу­чают средние повреждения при давлениях 60-80 кПа. Железнодорожный подвижной состав может эксплуатиро­ваться после воздействия избыточных давлений: вагоны-до 40 кПа, тепло­возы - до 70 кПа (слабые разру­шения).

Самолеты- более уязвимые объ­екты, чем остальные транспортные средства. Нагрузки, создаваемые из­быточным давлением 10 кПа, доста­точны для того, чтобы образовались вмятины в обшивке самолета, дефор­мировались крылья и стрингеры, что может привести к временному снятию с полетов.

Воздушная ударная волна также действует на растения. Полное по­вреждение лесного массива на­блюдается при избыточном давлении, превышающем 50 кПа (0,5 кгс/см 2). Деревья при этом вырываются с корнем, ломаются и отбрасываются, образуя сплошные завалы. При избы­точном давлении от 30 до 50 кПа (03,- 0,5 кгс/см 2) повреждается около 50 % деревьев (завалы также сплош­ные), а при давлении от 10 до 30 кПа (0,1 - 0,3 кгс/см 2) -до 30% деревьев. Молодые деревья более устойчивы к воздействию ударной волны, чем ста­рые и спелые.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва являются:

  • -ударная волна
  • -световое излучение
  • -проникающая радиация
  • -радиоактивное заражение местности
  • -электромагнитный импульс

Рассмотрим их.

а) Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 сек ударная волна проходит около

1000 м, за 5 сек-2000 м, за 8 сек - около 3000 м. Это служит обоснованием норматива N5 ЗОМП "Действия при вспышке ядерного взрыва": отлично - 2 сек, хорошо - 3 сек, удовлетврительно-4 сек.

Поражающее действие ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства прежде всего определяются избыточным давлением и скоростью движения воздуха в ее фронте. Незащищенные люди могут, кроме того поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери войск могут оказаться большими, чем от непосредственного действия ударной волны.

а) Ударная волна способна наносить поражения и в закрытых помещениях, проникая туда через щели и отверстия. Поражения, наносимые ударной волной, подразделяются на легкие, средние, тяжелые и крайне тяжелые.

Легкие поражения характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей. Тяжелые поражения характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей. Степень поражения ударной волной зависит прежде всего от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние -- до 2 км, тяжелые -- до 1,5 км от эпицентра взрыва.

С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва. При подземном взрыве возникает ударная волна в грунте, а при подводном -- в воде.

Кроме того, при этих видах взрывов часть энергии расходуется на создание ударной волны и в воздухе. Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода;

при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.

б) Световое излучение ядерного взрыва представляет собой поток лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное излучение. Источником светового излучения является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Яркость светового излучения в первую секунду в несколько раз превосходит яркость Солнца.

Поглощенная энергия светового излучения переходит в тепловую, что приводит к разогреву поверхностного слоя материала. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение горючего материала и растрескивание или оплавление негорючего, что может приводить к огромным пожарам. При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия, которое рассматривается в четвертом учебном вопросе.

Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к полной потере зрения.

Ожоги, вызываемые световым излучением, не отличаются от обычных, вызываемых огнем или кипятком. они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности.

В зависимости от воспринятого светового импульса ожоги делятся на три степени. Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности. При ожогах второй степени на коже появляются пузыри. При ожогах третьей степени наблюдается омертвление кожи и образование язв.

При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 МгТ это расстояние увеличится до 22,4 км. ожоги второй степени проявляются на расстояниях 2,9 и 14,4 км и ожоги третьей степени -- на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кТ и 1МгТ.

в) Проникающая радиация представляет собой невидимый поток гамма квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма кванты и нейтроны распространяются во все стороны от центра взрыва на сотни метров. С увеличением расстояния от взрыва количество гамма квантов и нейтронов, проходящее через единицу поверхности, уменьшается. При подземном и подводном ядерных взрывах действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма квантов водой.

Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением.

Поражающее действие проникающей радиации определяется способностью гамма квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (р). Дозе радиации 1 р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов.

В зависимости от дозы излучения различают три степени лучевой болезни. Первая (легкая) возникает при получении человеком дозы от 100 до 200 р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из троя. Вторая (средняя) степень лучевой болезни развивается при получении дозы 200-300 р; в этом случае признаки поражения -- головная боль, повышение температуры, желудочно-кишечное расстройство -- проявляются более резко и быстрее, личный состав в большинстве случаев выходит из строя. Третья (тяжелая) степень лучевой болезни возникает при дозе свыше 300 р; она характеризуется тяжелыми головными болями, тошнотой, сильной общей слабостью, головокружением и другими недомоганиями; тяжелая форма нередко приводит к смертельному исходу.

г) Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда и непрореагировавшей частью заряда, выпадающими из облака взрыва, а также наведенной радиоактивностью.

С течением времени активность осколков деления быстр уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва.

При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа-частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета-активны, распад многих из них сопровождается гамма-излучением.

Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики - то одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру.

Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем все более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака.

Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину нескольких десятков километров.

Поражения в результате внутреннего облучения появляются в результате попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм.

На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

д) Электромагнитный импульс воздействует прежде всего на радиоэлектронную и электронную аппаратуру (пробой изоляции, порча полупроводниковых приборов, перегорание предохранителей и т.д.). Электромагнитный импульс представляет собой возникающее на очень короткое время мощное электрическое поле.