Denklem 2'yi Çözün 4. Doğrusal Denklemleri Örneklerle Çözme

İlk kez 7.sınıf matematik dersinde karşılaşıyoruz iki değişkenli denklemler ancak bunlar yalnızca iki bilinmeyenli denklem sistemleri bağlamında incelenir. Bu nedenle, denklemin katsayılarına onları sınırlayan belirli koşulların getirildiği bir dizi problem gözden kayboluyor. Ayrıca, Birleşik Devlet Sınavı materyallerinde ve giriş sınavlarında bu tür problemlere giderek daha sık rastlanmasına rağmen, “Doğal veya tam sayılarda denklem çözme” gibi problem çözme yöntemleri de göz ardı edilmektedir.

Hangi denkleme iki değişkenli denklem denir?

Yani örneğin 5x + 2y = 10, x 2 + y 2 = 20 veya xy = 12 denklemleri iki değişkenli denklemlerdir.

2x – y = 1 denklemini düşünün. x = 2 ve y = 3 olduğunda doğru olur, yani bu değişken değer çifti söz konusu denklemin bir çözümüdür.

Dolayısıyla, iki değişkenli herhangi bir denklemin çözümü, bu denklemi gerçek bir sayısal eşitliğe dönüştüren değişkenlerin değerleri olan sıralı çiftler (x; y) kümesidir.

İki bilinmeyenli bir denklem şunları yapabilir:

A) tek bir çözümü var.Örneğin, x 2 + 5y 2 = 0 denkleminin tek bir çözümü vardır (0; 0);

B) birden fazla çözümü var.Örneğin, (5 -|x|) 2 + (|y| – 2) 2 = 0'ın 4 çözümü vardır: (5; 2), (-5; 2), (5; -2), (-5; -2);

V) hiçbir çözümü yok.Örneğin x 2 + y 2 + 1 = 0 denkleminin çözümü yoktur;

G) sonsuz sayıda çözümü var.Örneğin, x + y = 3. Bu denklemin çözümleri toplamı 3'e eşit sayılar olacaktır. Bu denklemin çözüm kümesi (k; 3 – k) biçiminde yazılabilir; burada k herhangi bir gerçektir sayı.

İki değişkenli denklemleri çözmenin ana yöntemleri, ifadeleri çarpanlara ayırmaya, tam bir kareyi izole etmeye, ikinci dereceden bir denklemin özelliklerini kullanmaya, sınırlı ifadelere ve tahmin yöntemlerine dayalı yöntemlerdir. Denklem genellikle bilinmeyenleri bulmaya yönelik bir sistemin elde edilebileceği bir forma dönüştürülür.

Faktorizasyon

Örnek 1.

Denklemi çözün: xy – 2 = 2x – y.

Çözüm.

Çarpanlara ayırma amacıyla terimleri gruplandırıyoruz:

(xy + y) – (2x + 2) = 0. Her parantezden ortak bir çarpan çıkarıyoruz:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Elimizde:

y = 2, x – herhangi bir gerçek sayı veya x = -1, y – herhangi bir gerçek sayı.

Böylece, cevap (x; 2), x € R ve (-1; y), y € R formundaki tüm çiftlerdir.

Negatif olmayan sayıların sıfıra eşitliği

Örnek 2.

Denklemi çözün: 9x 2 + 4y 2 + 13 = 12(x + y).

Çözüm.

Gruplandırma:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Artık her parantez kare fark formülü kullanılarak katlanabilir.

(3x – 2) 2 + (2y – 3) 2 = 0.

Negatif olmayan iki ifadenin toplamı yalnızca 3x – 2 = 0 ve 2y – 3 = 0 ise sıfırdır.

Bu, x = 2/3 ve y = 3/2 anlamına gelir.

Cevap: (2/3; 3/2).

Tahmin yöntemi

Örnek 3.

Denklemi çözün: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Çözüm.

Her parantez içinde tam bir kare seçiyoruz:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Tahmin edelim parantez içindeki ifadelerin anlamı.

(x + 1) 2 + 1 ≥ 1 ve (y – 2) 2 + 2 ≥ 2 ise denklemin sol tarafı her zaman en az 2 olur. Eşitlik şu durumlarda mümkündür:

(x + 1) 2 + 1 = 1 ve (y – 2) 2 + 2 = 2, yani x = -1, y = 2.

Cevap: (-1; 2).

İkinci dereceden iki değişkenli denklemleri çözmek için başka bir yöntemle tanışalım. Bu yöntem denklemin şu şekilde ele alınmasından oluşur: bazı değişkenlere göre kare.

Örnek 4.

Denklemi çözün: x 2 – 6x + y – 4√y + 13 = 0.

Çözüm.

Denklemi x için ikinci dereceden bir denklem olarak çözelim. Diskriminantı bulalım:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Denklemin çözümü ancak D = 0 olduğunda, yani y = 4 olduğunda olacaktır. Y'nin değerini orijinal denklemde yerine koyarız ve x = 3 olduğunu buluruz.

Cevap: (3; 4).

Genellikle iki bilinmeyenli denklemlerde şunu belirtirler: değişkenlere ilişkin kısıtlamalar.

Örnek 5.

Denklemi tam sayılarla çözün: x 2 + 5y 2 = 20x + 2.

Çözüm.

Denklemi x 2 = -5y 2 + 20x + 2 şeklinde yeniden yazalım. Ortaya çıkan denklemin sağ tarafı 5'e bölündüğünde 2 kalanını verir. Dolayısıyla x 2, 5'e bölünemez. Ancak a'nın karesi 5'e bölünmeyen sayı 1 veya 4 kalanını verir. Dolayısıyla eşitlik mümkün değildir ve çözüm yoktur.

Cevap: Kök yok.

Örnek 6.

Denklemi çözün: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Çözüm.

Her parantez içindeki karelerin tamamını vurgulayalım:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Denklemin sol tarafı her zaman 3'ten büyük veya eşittir. Eşitlik |x| olması koşuluyla mümkündür. – 2 = 0 ve y + 3 = 0. Böylece x = ± 2, y = -3 olur.

Cevap: (2; -3) ve (-2; -3).

Örnek 7.

Denklemi sağlayan her negatif tam sayı (x;y) çifti için
x 2 – 2xy + 2y 2 + 4y = 33, (x + y) toplamını hesaplayın. Lütfen cevabınızda en küçük miktarı belirtin.

Çözüm.

Tam kareleri seçelim:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. x ve y tam sayı olduğundan kareleri de tam sayıdır. 1 + 36'yı eklersek iki tam sayının karelerinin toplamını 37 elde ederiz. Dolayısıyla:

(x – y) 2 = 36 ve (y + 2) 2 = 1

(x – y) 2 = 1 ve (y + 2) 2 = 36.

Bu sistemleri çözüp x ve y'nin negatif olduğunu dikkate alarak şu çözümleri buluyoruz: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Cevap: -17.

İki bilinmeyenli denklemleri çözmekte zorluk yaşıyorsanız umutsuzluğa kapılmayın. Biraz pratik yaparak her denklemi çözebilirsiniz.

Hala sorularınız mı var? İki değişkenli denklemleri nasıl çözeceğinizi bilmiyor musunuz?
Bir öğretmenden yardım almak için kaydolun.
İlk ders ücretsiz!

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.

Parantez açılıp benzer terimler getirildikten sonra şu şekli alan, bir bilinmeyenli denklem

balta + b = 0 a ve b'nin keyfi sayılar olduğu yere denir Doğrusal Denklem bilinmeyen biriyle. Bugün bu doğrusal denklemleri nasıl çözeceğimizi bulacağız.

Örneğin, tüm denklemler:

2x + 3= 7 – 0,5x; 0,3x = 0; x/2 + 3 = 1/2 (x – 2) - doğrusal.

Denklemi gerçek eşitliğe dönüştüren bilinmeyenin değerine denir. karar veya denklemin kökü .

Örneğin, 3x + 7 = 13 denkleminde bilinmeyen x yerine 2 sayısını yazarsak, doğru eşitlik olan 3 2 +7 = 13'ü elde ederiz. Bu, x = 2 değerinin çözüm veya kök olduğu anlamına gelir. denklemin.

Ve x = 3 değeri, 3x + 7 = 13 denklemini gerçek eşitliğe dönüştürmez çünkü 3 2 +7 ≠ 13. Bu, x = 3 değerinin denklemin bir çözümü veya kökü olmadığı anlamına gelir.

Herhangi bir doğrusal denklemin çözülmesi, formdaki denklemlerin çözülmesine indirgenir

balta + b = 0.

Serbest terimi denklemin sol tarafından sağa taşıyalım, b'nin önündeki işareti tersine çevirelim, şunu elde ederiz:

a ≠ 0 ise x = ‒ b/a .

Örnek 1. 3x + 2 =11 denklemini çözün.

2'yi denklemin sol tarafından sağa doğru hareket ettirelim, 2'nin önündeki işareti ters tarafa çevirelim, şunu elde ederiz:
3x = 11 – 2.

O zaman çıkarma işlemini yapalım
3x = 9.

X'i bulmak için ürünü bilinen bir faktöre bölmeniz gerekir;
x = 9:3.

Bu, x = 3 değerinin denklemin çözümü veya kökü olduğu anlamına gelir.

Cevap: x = 3.

a = 0 ve b = 0 ise 0x = 0 denklemini elde ederiz. Bu denklemin sonsuz sayıda çözümü vardır, çünkü herhangi bir sayıyı 0 ile çarptığımızda 0 elde ederiz, ancak b de 0'a eşittir. Bu denklemin çözümü herhangi bir sayıdır.

Örnek 2. 5(x – 3) + 2 = 3 (x – 4) + 2x ‒ 1 denklemini çözün.

Parantezleri genişletelim:
5x – 15 + 2 = 3x – 12 + 2x – 1.


5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.

İşte bazı benzer terimler:
0x = 0.

Cevap: x - herhangi bir sayı.

a = 0 ve b ≠ 0 ise 0x = - b denklemini elde ederiz. Bu denklemin hiçbir çözümü yoktur, çünkü herhangi bir sayıyı 0 ile çarptığımızda 0 elde ederiz, ancak b ≠ 0 olur.

Örnek 3. x + 8 = x + 5 denklemini çözün.

Bilinmeyen içeren terimleri sol tarafta, serbest terimleri ise sağ tarafta gruplayalım:
x – x = 5 – 8.

İşte bazı benzer terimler:
0х = ‒ 3.

Cevap: Çözüm yok.

Açık Şekil 1 doğrusal bir denklemin çözümü için bir diyagram gösterir

Tek değişkenli denklemleri çözmek için genel bir şema çizelim. Örnek 4'ün çözümünü ele alalım.

Örnek 4. Diyelim ki denklemi çözmemiz gerekiyor

1) Denklemin tüm terimlerini paydaların en küçük ortak katı olan 12 ile çarpın.

2) İndirgemeden sonra şunu elde ederiz:
4 (x – 4) + 3 2 (x + 1) ‒ 12 = 6 5 (x – 3) + 24x – 2 (11x + 43)

3) Bilinmeyen ve serbest terimler içeren terimleri ayırmak için parantezleri açın:
4x – 16 + 6x + 6 – 12 = 30x – 90 + 24x – 22x – 86.

4) Bir bölümde bilinmeyenleri içeren terimleri, diğer bölümde ise serbest terimleri gruplayalım:
4x + 6x – 30x – 24x + 22x = ‒ 90 – 86 + 16 – 6 + 12.

5) Benzer terimleri sunalım:
- 22х = - 154.

6) – 22'ye bölersek, şunu elde ederiz:
x = 7.

Gördüğünüz gibi denklemin kökü yedidir.

Genellikle böyle denklemler aşağıdaki şema kullanılarak çözülebilir:

a) denklemi tamsayı formuna getirin;

b) braketleri açın;

c) bilinmeyeni içeren terimleri denklemin bir kısmında, serbest terimleri ise diğer kısmında gruplandırın;

d) benzer üyeleri getirmek;

e) Benzer terimlerin getirilmesinden sonra elde edilen aх = b formundaki bir denklemi çözün.

Ancak bu şema her denklem için gerekli değildir. Birçok basit denklemi çözerken, birinciden değil ikinciden başlamalısınız ( Örnek. 2), üçüncü ( Örnek. 13) ve hatta örnek 5'teki gibi beşinci aşamadan itibaren.

Örnek 5. 2x = 1/4 denklemini çözün.

Bilinmeyeni bulun x = 1/4:2,
x = 1/8
.

Ana durum sınavında bulunan bazı doğrusal denklemlerin çözümüne bakalım.

Örnek 6. 2 (x + 3) = 5 – 6x denklemini çözün.

2x + 6 = 5 – 6x

2x + 6x = 5 – 6

Cevap: - 0,125

Örnek 7. Denklemi çözün – 6 (5 – 3x) = 8x – 7.

– 30 + 18x = 8x – 7

18x – 8x = – 7 +30

Cevap: 2.3

Örnek 8. Denklemi çözün

3(3x – 4) = 4 7x + 24

9x – 12 = 28x + 24

9x – 28x = 24 + 12

Örnek 9. f(x + 2) = 3 7 ise f(6)'yı bulun

Çözüm

f(6)'yı bulmamız gerektiğinden ve f(x + 2)'yi bildiğimizden,
o zaman x + 2 = 6.

Doğrusal denklem x + 2 = 6'yı çözüyoruz,
x = 6 – 2, x = 4 elde ederiz.

Eğer x = 4 ise
f(6) = 3 7-4 = 3 3 = 27

Cevap: 27.

Hala sorularınız varsa veya denklem çözmeyi daha detaylı anlamak istiyorsanız PROGRAM'daki derslerime kaydolun. Sana yardım etmekten memnun olacağım!

TutorOnline ayrıca eğitmenimiz Olga Alexandrovna'nın hem doğrusal denklemleri hem de diğerlerini anlamanıza yardımcı olacak yeni bir video dersini izlemenizi önerir.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.


Denklem sistemlerinin iki tür çözümünü analiz edelim:

1. Sistemin yerine koyma yöntemini kullanarak çözülmesi.
2. Sistem denklemlerini terim terim toplayarak (çıkararak) sistemi çözmek.

Denklem sistemini çözmek için ikame yöntemiyle basit bir algoritma izlemeniz gerekir:
1. Ekspres. Herhangi bir denklemden bir değişkeni ifade ederiz.
2. Değiştir. Ortaya çıkan değeri, ifade edilen değişken yerine başka bir denklemde değiştiririz.
3. Ortaya çıkan denklemi tek değişkenle çözün. Sisteme çözüm buluyoruz.

Çözmek için terim dönem toplama (çıkarma) yöntemiyle sistemşunları yapmanız gerekir:
1. Katsayılarını aynı yapacağımız bir değişken seçin.
2. Denklemleri topluyor veya çıkarıyoruz, sonuçta tek değişkenli bir denklem elde ediliyor.
3. Ortaya çıkan doğrusal denklemi çözün. Sisteme çözüm buluyoruz.

Sistemin çözümü fonksiyon grafiklerinin kesişim noktalarıdır.

Örnekleri kullanarak sistemlerin çözümünü ayrıntılı olarak ele alalım.

Örnek 1:

Yerine koyma yöntemiyle çözelim

Bir denklem sistemini ikame yöntemini kullanarak çözme

2x+5y=1 (1 denklem)
x-10y=3 (2. denklem)

1. Ekspres
İkinci denklemde katsayısı 1 olan bir x değişkeninin olduğu görülmektedir, bu da x değişkenini ikinci denklemden ifade etmenin en kolay olduğu anlamına gelir.
x=3+10y

2.İfade ettikten sonra ilk denklemde x değişkeni yerine 3+10y yazıyoruz.
2(3+10y)+5y=1

3. Ortaya çıkan denklemi tek değişkenle çözün.
2(3+10y)+5y=1 (parantezleri açın)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Denklem sisteminin çözümü grafiklerin kesişim noktalarıdır, dolayısıyla x ve y'yi bulmamız gerekiyor çünkü kesişim noktası x ve y'den oluşuyor.x'i bulalım, ifade ettiğimiz ilk noktada y'yi yazarız.
x=3+10y
x=3+10*(-0,2)=1

X değişkenini yazdığımız ilk yere, y değişkenini ikinci sıraya yazmak gelenekseldir.
Cevap: (1; -0,2)

Örnek #2:

Terim terim toplama (çıkarma) yöntemini kullanarak çözelim.

Toplama yöntemini kullanarak bir denklem sistemini çözme

3x-2y=1 (1 denklem)
2x-3y=-10 (2. denklem)

1. Bir değişken seçiyoruz, diyelim ki x'i seçiyoruz. İlk denklemde x değişkeninin katsayısı 3, ikincisinde - 2'dir. Katsayıları aynı yapmamız gerekiyor, bunun için denklemleri çarpma veya herhangi bir sayıya bölme hakkımız var. İlk denklemi 2, ikincisini 3 ile çarpıyoruz ve toplam 6 katsayısını elde ediyoruz.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2. X değişkeninden kurtulmak için birinci denklemden ikinciyi çıkarın.Doğrusal denklemi çözün.
__6x-4y=2

5y=32 | :5
y=6.4

3. x'i bulun. Bulunan y'yi denklemlerden herhangi birinin yerine koyarız, diyelim ki ilk denklemin içine.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Kesişme noktası x=4,6 olacaktır; y=6.4
Cevap: (4.6; 6.4)

Sınavlara ücretsiz hazırlanmak ister misiniz? Çevrimiçi öğretmen ücretsiz. Şaka yapmıyorum.