Зрительные пигменты. фоторецепция. Какая из оболочек глазного яблока прозрачна спереди. Латеральное коленчатое тело является структурой

ЗРИТЕЛЬНЫЕ ПИГМЕНТЫ (лат. pigmentum краска)- светочувствительные пигменты фоторецепторов сетчатки глаза. Воспринимая энергию светового импульса, 3. п. претерпевают сложный цикл фотохим. превращений, в результате которых отдельный зрительный рецептор сетчатки глаза, содержащий 3. п. (колбочка или палочка), переходит в возбужденное состояние и по зрительному нерву передает полученную информацию в ц. н. с. Являясь основной структурно-функциональной частью фоторецепторной мембраны зрительных клеток сетчатки глаза, 3. п. таким образом играют ключевую роль в механизмах зрения (см.).

Номенклатура и строение зрительных пигментов. Все изученные 3. п. позвоночных и беспозвоночных животных представляют собой комплексы водонерастворимого мембранного белка опсина и связанного с ним хромофора (ретиналя). Ретиналь, или альдегид витамина А, может существовать в двух формах - ретиналь1 и ретиналь2.

По природе хромофора 3. п. разделяют на два класса - родопсины (см.), содержащие ретиналь1, и порфиропсины, содержащие ретиналь2. Родопсины содержатся в сетчатой оболочке глаза всех сухопутных и морских животных, порфиропсины - в сетчатке глаз пресноводных животных. У некоторых рыб и амфибий найдены 3. п., содержащие одновременно ретиналь! и ретиналь,. Есть попытки классифицировать 3. п. на основе различий в опсинах, специфичных для палочек или колбочек сетчатки глаза. Напр., родопсин - это комплекс ретиналя1 с палочковым опсином, йодопсин - ретиналя1 с колбочковым опсином, порфиропсин - ретиналя2 с палочковым опсином, комплекс ретиналь - колбочковый опсин образует цианопсин. Однако классифицировать 3. п. на основе опсинов крайне трудно, т. к. различных опсинов, по крайней мере, пять.

Из всех известных 3. п. наиболее полно исследованы родопсины, выделенные из глаз быка, лягушки и кальмара. Их мол. вес (масса) порядка 30-40 тыс., каждая молекула содержит ок. 400 аминокислот и один хромофор. Кроме того, в состав молекулы 3. п. входит олигосахаридная цепь: 3 радикала глюкозамина, 2 маннозы, 1 галактозы. Липиды (гл. обр. фосфолипиды) образуют с молекулой 3. п. прочный комплекс. Сохраняя свои основные спектральные свойства (см. Спектральный анализ), 3. п. без липидов теряют ряд функционально важных, напр, способность к восстановлению.

Чистый ретиналь имеет желтый цвет, максимум его спектра поглощения лежит в области 370 нм. Опсин бесцветен, максимум поглощения - в ультрафиолетовой области (ок. 280 нм). Цвет молекулы родопсина красновато-розовый, максимум спектра поглощения ок. 500 нм. Причина такого сильного спектрального сдвига при образовании комплекса (с 370 до 500 нм - так наз. батохромного сдвига) не получила до сих пор однозначного объяснения.

Максимумы спектров поглощения родопсинов и порфиропсинов захватывают достаточно широкую область видимого спектра - от 433 до 562 нм у родопсинов и от 510 до 543 нм у порфиропсинов. Если же к порфиропсинам относить и 3. п. колбочек головастика лягушки, карпа и пресноводной черепахи, т. е. цианопсин с максимумом спектра поглощения при 620 нм, то эта область оказывается еще шире. Развитие методов микроспектрофотометрии позволило определить спектры поглощения многих типов одиночных фоторецепторных клеток животных и человека. По полученным данным, 3. п. сетчатки человека имеют следующие максимумы спектров поглощения: палочки 498, сине-, зелено- и красночувствительные колбочки - 440, 535 и 575 нм соответственно.

Изучение 3. п. начато нем. исследователем Мюллером (H. Muller), который в 1851 г. описал, как извлеченная из глаза лягушки розовато-пурпурная сетчатка становится на свету сначала желтоватой, а потом белесой. В 1877 г. Болль (F. Boll) также описал этот феномен, сделав вывод, что в зрительных клетках сетчатки находится какое-то красное светочувствительное вещество и что обесцвечивание этого вещества связано с механизмом зрения. Большая заслуга в изучении 3. п. принадлежит Кюне (W. Kuhne, 1877), к-рому удалось выделить 3. п. и подробно исследовать их. Он назвал извлеченный им 3. п. зрительным пурпуром, установил его белковую природу, исследовал некоторые его спектральные свойства и фотопревращения, обнаружил способность 3. п. к восстановлению в темноте. Большой вклад в изучение 3. п. внес амер. биохимик и физиолог Дж. Уолд.

Фотопревращения зрительных пигмeнтов. При действии на 3. п. света в них происходит цикл фотохим. превращений, в основе к-рого лежит первичная фотохимическая реакция цис-транс-изомеризации ретиналя (см. Изомерия). При этом происходит нарушение связи хромофора с белком. Последовательность превращений 3. п. может быть представлена следующим образом: родопсин (хромофор находится в цис-форме) -> прелюмиродопсин -> люмиродопсин -> метародопсин I -> метародопсин II -> белок опсин -> хромофор в транс-форме. Под влиянием фермента - ретинолдегидрогеназы - последний переходит в витамин А, который поступает из наружных члеников палочек и колбочек в клетки пигментного слоя сетчатки. При затемнении глаза происходит регенерация 3. п., для осуществления к-рой необходимо наличие цис-изомера витамина А, служащего исходным продуктом для образования хромофора (альдегида витамина А). При недостатке или отсутствии в организме витамина А может нарушиться образование родопсина и развиться как следствие расстройство сумеречного зрения, так наз. куриная слепота (см. Гемералопия). В процессе фотопревращений родопсина на стадии перехода люмиродопсина в метародопсин I в рецепторной клетке возникает в ответ на яркую вспышку так наз. ранний (коротколатентный) рецепторный потенциал. Вместе с тем он не является зрительным сигналом, хотя и может служить одним из тестов для исследования механизма превращений 3. п. в фоторецепторной мембране. Функциональное значение имеет так наз. поздний рецепторный потенциал, латентный период к-рого (5-10 мсек) соизмерим со временем образования метародопсина II. Предполагают, что реакция перехода метародопси-на I в метародопсин II обеспечивает возникновение зрительного сигнала.

Поскольку на свету 3. п. непрерывно обесцвечиваются, то должны существовать механизмы их постоянного восстановления. Одни из них чрезвычайно быстрые (фоторегенерация), другие достаточно быстрые, (биохим, регенерация, Темновая), третьи медленные (синтез 3. п. в ходе постоянного обновления фоторецепторной мембраны в зрительной клетке). Фоторегенерация имеет физиол, значение у беспозвоночных животных (напр., у головоногих моллюсков - кальмаров, осьминогов). В механизме биохим. регенерации 3. п. у позвоночных важную роль, по-видимому, играет фермент изомераза (см.), обеспечивающий изомеризацию транс-ретиналя (или транс-витамина А) снова в цис-изомерную форму. Однако окончательных доказательств существования такого фермента пока не имеется. Сама же реакция образования молекулы 3. п. при наличии в системе 11-цис-изомера ретиналя и опсина происходит легко, без затраты энергии. Обнаружена способность обесцвеченного родопсина к реакции фосфорилирования (см.); предполагается, что эта реакция является одним из звеньев механизма световой адаптации зрительной клетки.

Библиография: Аккерман Ю. Биофизика, пер. с англ., М., 1964; Вилли К. и Деть e В. Биология, пер. с англ., М., 1974, библиогр.; Конев С. В. и Волотовский И. Д. Введение в молекулярную фотобиологию, с. 61, Минск, 1971; Островский М. А. и Федорович И. Б. Фотоиндуцированные изменения фоторецепторной мембраны, в кн.: Структура и функции биол, мембран, под ред. А. С. Трошина и др., с. 224, М., 1975, библиогр.; Физиология сенсорных систем, под ред. Г. В. Гершуни, ч. 1, с. 88, Л., 1971; Biochemistry and physiology of visual pigments, ed. by H. Lan-ger, В. a. o., 1973; Handbook of sensory physiology, ed. by H. A. R. Jung a. o., v. 7, pt 1-2, B., 1972.

М. А. Островский.



Зрительный пигмент

структурно-функциональная единица светочувствительной мембраны фоторецепторов (См. Фоторецепторы)сетчатки глаза - палочек и колбочек. В З. п. осуществляется первый этап зрительного восприятия - поглощение квантов видимого света. Молекула З. п. (молярная масса около 40 000) состоит из хромофора, поглощающего свет, и опсина - комплекса белка и фосфолипидов. Хромофором всех З. п. служит альдегид витамина A 1 или A 2 - ретиналь или 3-дегидроретиналь. Два вида опсина (палочковый и колбочковый) и два вида ретиналя, соединяясь попарно, образуют 4 вида З. п., различающихся по спектру поглощения: родопсин (самый распространённый палочковый З. п.), или зрительный пурпур (максимум поглощения 500 нм ), иодопсин (562 нм ), порфиропсин (522 нм ) и цианопсин (620 нм ). Первичное фотохимическое звено в механизме зрения (См. Зрение) состоит в фотоизомеризации ретиналя, который под действием света меняет изогнутую конфигурацию на плоскую. За этой реакцией следует цепь темновых процессов, приводящих к возникновению зрительного рецепторного сигнала, который затем синаптически передаётся следующим нервным элементам сетчатки - биполярным и горизонтальным клеткам.

Лит.: Физиология сенсорных систем, ч. 1, Л., 1971, с. 88-125 (Руководство по физиологии); Wald G., The molecular basis of visual excitation, «Nature», 1968, v. 219.

М. А. Островский.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Зрительный пигмент" в других словарях:

    Структурно функц. единица светочувствит. мембраны фоторецепторов сетчатки глаза палочек и колбочек. Молекула 3. п. состоит из хромофора, поглощающего свет, и опсина комплекса белка и фосфолипидов. Хромофор представлен альдегидом витамина A1… … Биологический энциклопедический словарь

    Родопсин (зрительный пурпур) основной зрительный пигмент в составе палочек сетчатки глаза человека и животных. Относится к сложным белкам хромопротеинам. Модификации белка, свойственные различным биологическим видам, могут существенно различаться … Википедия

    ЗРИТЕЛЬНЫЙ(Е) ПИГМЕНТ(Ы) - См. фотопигмент … Толковый словарь по психологии

    Содержащийся внутри палочек пигмент сетчатки глаза, в состав которого входит ретинальдегид (retinal) витамин А и белок. Наличие родопсина в сетчатке глаза необходимо для обеспечения нормального зрения при тусклом свете. Под воздействием света… … Медицинские термины

    РОДОПСИН (RHODOPSIN), ПУРПУР ЗРИТЕЛЬНЫЙ - (visual purple) содержащийся внутри палочек пигмент сетчатки глаза, в состав которого входит ретинальдегид (retinal) витамин А и белок. Наличие родопсина в сетчатке глаза необходимо для обеспечения нормального зрения при тусклом свете. Под… … Толковый словарь по медицине

    - (зрительный пурпур), светочувствит. сложный белок, осн. зрительный пигмент палочковых клеток сетчатки глаза у позвоночных животных и человека. Поглощая квант света (максимум поглощения ок. 500 нм), Р. распадается и вызывает возбуждение… … Естествознание. Энциклопедический словарь

    - (зрительный пигмент), светочувствительный белок палочек сетчатки глаза позвоночных животных и зрительных клеток беспозвоночных. Р. гликопротеин (мол. м. ок. 40 тыс.; полипептидная цепь состоит из 348 аминокислотных остатков), содержащий… … Химическая энциклопедия

    - (от греч. rhódon роза и ópsis зрение) зрительный пурпур, основной Зрительный пигмент палочек сетчатки позвоночных (кроме некоторых рыб и земноводных на ранних стадиях развития) и беспозвоночных животных. По химической… … Большая советская энциклопедия

    - (зрительный пурпур), светочувствительный сложный белок, основной зрительный пигмент палочковых клеток сетчатки глаза у позвоночных животных и человека. Поглощая квант света (максимум поглощения около 500 нм), родопсин распадается и вызывает… … Энциклопедический словарь

    Основная статья: Палочки (сетчатка) Родопсин (устаревшее, но до сих употребляющееся название зрительный пурпур) основной зрительный пигмент. Содержится в палочках сетчатки глаза морских беспозвоночных, рыб, почти всех наземных… … Википедия

25-10-2014, 13:04

Кванты света поглощаются в рецепторах специализированны ми молекулами - зрительными фотопигментами. Зрительные пигменты были открыты независимо друг от друга немецкими физиологами Ф. Боллем и В. Кюне в 1877-1879 гг. Ф. Болль заметил, что выделенная из зрительного бокала лягушки сетчатка поначалу выглядит красной, а затем, выцветая на свету, становится желтой и, наконец, совсем бесцветной.


В. Кюне нашел, что в нормально функционирующем глазу животного цвет сетчатки после интенсивного освещения светом восстанавливается, если животное снова поместить в темноту. На основе этих наблюдений был сделан вывод о наличии в сетчатке глаза светочувствительного вещества (пигмента), концентрация которого уменьшается на свету и восстанавливается в темноте.

Зрительные пигменты -это сложные молекулы хромолипопротеидов, состоящие у позвоночных и беспозвоночных животных из двух основных частей: хромофора (красящей части молекулы, определяющей цвет рецептора при освещении) и белка (опсина). Хромофор определяет максимум и интенсивность поглощения света в пигменте и представляет собой альдегид спиртов - витаминов А1 и А2.

Названия этих альдегидов - ретиналь-1 и ретиналь-2. Наличие добавочной двойной связи в ретинале-2 приводит к сдвигу максимума спектра поглощения в длинноволновую область. Ретиналь присоединяется к опсину - белковой мутации, имеющейся только в фоторецепторах. Выделяют опсин палочек - скотопсин и колбочек - фотопсин. Скотопсин состоит из 230-270 аминокислотных остатков, последовательность которых пока не определена.

О фотопсине известно мало: имеются лишь данные о его спиральной конфигурации. Собственно светопоглощающая часть молекулы пигмента, ретиналь, является разновидностью каротиноидов- пигментов, наиболее распространенных в фотосинтезирующих. тканях растений и животных.

Спектральные характеристики пигментов определяются комбинациями одного из ретиналей с той или иной разновидностью опсинов, многообразие которых и определяет многообразие зрительных пигментов у разных животных. Так, соединение скотопсина с ретиналем-1 приводит к образованию пигмента палочек - родопсина с максимумом поглощения при?=500 нм, а соединение его с ретиналем-2 образует другой палочковый пигмент - порфиропсин с максимумом поглощения при? =525 нм. Комбинации ретиналя-1 с разного вида фотопсинами в сетчатке человека и обезьяны образуют колбочковые пигменты с максимумами поглощения при? = 445 нм, ? = 535 нм и? =570 нм, называемые соответственно цианолабом, хлоролабом и эритролабом.

Светопоглощающие свойства пигментов определяются именно взаимодействием хромофора иопсина: максимумы поглощения хромофора и опсина, взятых отдельно, локализуются в области? =278 нм (ретиналь-1) и? = 378 нм (скотопсин), тогда как их соединение - родопсин - имеет максимум поглощения при? = 500 нм. Максимум поглощения- это один из параметров спектральной характеристики пигмента, определяющей в целом эффективность поглощения пигментом квантов света (фотонов) разных длин волн (рис. 3.1.4а).


Первые измерения спектров поглощения пигментов в отдельных колбочках сетчатки обезьяны и человека были проведены Брауном к Уолдом и Марксом с соавторами с применением специально для этих целей разработанного метода микроспектрофотометрии. Препарат сетчатки размещался под микроскопом, который позволял под визуальным контролем фокусировать пучок света той или иной длины волны на наружном сегменте фоторецептора, где содержится пигмент.

Затем для каждой длины волны отдельно проводились измерения количества света, прошедшего через колбочку и не поглощенного ею (разница между количеством света, поданного на колбочку, и количеством света, пропущенного ею, характеризовала эффективность поглощения пигментом фотонов данной длины волны). Измерения повторялись после выцветания пигмента в результате интенсивного освещения (референтные измерения). В результате вычитания второго ряда измерений из первого получали дифференциальный спектр поглощения пигмента в виде функции световой чувствительности от длины волны излучения.
Из рис. 3.1.4а видно, что пигменты обладают широкополосными, сильно перекрывающимися спектрами поглощения. Все фотопигменты имеют дополнительный, характерный для каротиноидов, максимум поглощения (так называемый щис-пик» или «?-пик»), равный 2/3 от основного максимума. Для пигментов, основные максимумы поглощения которых локализованы в коротко- и средневолновой частях спектра, цис-пик приходится на ультрафиолетовую область и на анализе излучений из видимого спектра не сказывается. Если, далее, при построении функций спектральной чувствительности пигментов шкалу длин волн (ось абсцисс) перевести в шкалу частот, то спектры поглощения всех пигментов, включающих разные опсины, но один и тот же ретиаль (например, ретиналь-1), будут иметь одну и ту же форму.

При таком представлении данных, впервые предложенном Дартналлом"(1953) для пигментов на базе ретиналя-1, спектры поглощения разных фотопигментов отличаются между собой только» положением максимума. А тогда, зная максимум поглощения пигмента, мы можем восстановить форму его спектра поглощения сначала в координатах «частота излучения - чувствительность», а затем, используя отношение с= ?f и в координатах «длина волны - чувствительность».
Такой метод восстановления спектра поглощения неизвестного пигмента по данным лишь о его максимуме получил название метода номограмм. Метод номограмм широко используется также в нейрофизиологии цветового зрения при решении вопроса о числе и типе фотоприемников, конвергирующих на тот или иной цветочувствительный нейрон: сравнивается функция спектральной чувствительности нейрона с той1 или иной номограммой (или их комбинацией).

Многообразие фотопигментов в животном мире коррелирует с разнообразием экологических условий обитания. У рыб и амфибий в сетчатке может содержаться одновременно родопсин и порфиропсин, соотношение которых меняется в течение жизни особи; у проходных рыб замена родопсина порфиропсином предшествует переходу из соленой воды в пресную и наоборот. Связь набора пигментов с экологией обитания не является жесткой: изменения в составе пигментов могут быть вызваны сезонными изменениями и циркадными ритмами.

Фотоизомеризация.
Реакция фотопигмента на свет определяется числом поглощенных квантов независимо от длины волны и энергии излучения: например, поглощенные родопсином. 10 квантов света при? =430 нм вызывают в нем такие же структурные изменения (рис. 3.1.46), как и 10 поглощенных кванто» света при? = 500 нм.

И спектральная избирательность (спектр поглощения) пигмента определяется лишь разной вероятностью поглощения квантов света из разных участков видимого спектра. Таким образом, зрительные пигменты и в конечном счете фоторецепторы работают как «счетчики квантов света», различающиеся между собой лишь вероятностью поглощения фотонов разных длин волн.

При поглощении одной молекулой родопсина 1 кванта света происходит изменение пространственной конфигурации одной молекулы ретиналя - фотоизомеризация, состоящая в трансформации 11-цмс-формы ретиналя в полностью трансформу (рис. 3.1.4б).


Фотоизомеризация сопровождается циклом фотохимических реакций, за расшифровку которых Г. Уолду в 1930 г. была присуждена Нобелевская премия. Конечные продукты фотоизомеризации- полностью траксретиналь и опсин. Все промежуточные реакции до стадии метародопсин-П обратимы: продукты этих реакций могут быть снова превращены в родопсин через обратную гранс-ретинальизомеризацию.

Это означает, что до метародопсина-II в молекуле пигмента не происходит значительных конформационных изменений. На стадии метародопсина-II происходит отрыв ретиналя от белковой части молекулы. Из всех стадий изомеризации только первая - превращение родопсина в прелюмиродопсин (батородопсин)-нуждается в свете. Все остальные реакции протекают в темноте. Аналогичным образом проходит фотоизомеризация и в колбочковых пигментах.

Таким образом, фотоизомеризация - это молекулярный триггерный (пусковой) механизм фоторецепции, состоящий в изменении пространственной конфигурации молекулы зрительного пигмента. Последнее делает понятным, почему природа выбрала в качестве зрительного пигмента каротиноиды: наличие двойных связей в ретинале определяет возможности его изомеризации и; его высокую реактивность. Вокруг каждой двойной связи может происходить вращение частей молекулы, ее изгибание в пространстве. Такая форма наименее стабильна и наиболее чувствительна к температуре и свету. В природе обнаружены различные виды ретиналя - 7, 9, 11, 13-цис-формы, 9,13-дицис-форма, но в зрительных пигментах ретиналь всегда находится в 11-цис-форме.

Ресинтез пигмента в фоторецепторах происходит непрерывно на свету и в темноте с участием фермента ретиненизомеразы и состоит в обратной изомеризации ретинола из трансформы в 11-цис-форму. В колбочках этот фермент находится в самих рецепторах, в палочках-в пигментном эпителии, куда после отрыва от опсина переходит транс-ретинол и где осуществляется его изомеризация в 11-цис-форму. При этом ретиналь витамина А используется повторно, а белок синтезируется в рибосомах внутреннего сегмента.

Предполагают, что рекомбинация 11-цис-ретиналя с опсином происходит спонтанно. В пигментном эпителии локализуется около 11% витамина А (ретинола) из 13%, приходящихся на весь глаз. Витамин А образуется в печени за счет разрыва цепи каротиноида, содержащегося в пище, на две части и присоединения воды.

Специальным ретинолсвязующим белком витамин А транспортируется в пигментный эпителий, где окисляется до ретиналя. При дефиците витамина А наступает так называемая «куриная слепота» - понижение абсолютной световой чувствительности, особенно сильно сказывающееся на видении в сумерках, переходящее в постоянную слепоту из-за разрушения белка, нестабильного в свободном состоянии. Поэтому при заболевании «куриной слепотой» рекомендуют есть морковь, содержащую провитамин А - бета-каротин.

Каждый фоторецептор содержит только один фотопигмент, характеризующийся тем или иным спектром поглощения. В этой связи выделяют коротко-, средне- и длинноволновые колбочки, содержащие у приматов пигменты с максимумами поглощения соответственно при 445 нм, 535 нм и 570 нм. У пресноводных рыб длинноволновая колбочка содержит пигмент с максимумом поглощения при 620 нм, что коррелирует с формой спектрального распределения света в их среде обитания.

Иногда по традиции, оставшейся со времен трехкомпонентной гипотезы Юнга-Гельм- гольца, эти колбочки называют сине-, зелено- и красно-чувствительными рецепторами. Но со второй половины XX в., когда было выяснено, что никакой фоторецептор сам по себе спектрального анализа не осуществляет, а только реагирует на число поглощаемых фотонов независимо от длины волны излучения, эти цветовые названия рецепторов используют только в метафорическом смысле.

Классификация палочек, например, у лягушки, на «зеленые» и «красные» в ряде случаев основана не на спектральной чувствительности содержащегося в них пигмента, а на окраске тел рецепторов в проходящем свете. Так, «зеленые» палочки содержат пигмент с максимумом поглощения при 432 нм, поэтому при освещении белым светом они поглощают коротковолновые излучения, пропуская все остальные длины волн, и при визуальном контроле выглядят зеленоватыми.

В сетчатке рыб отмечена связь между длиной колбочки и спектральным типом содержащегося в ней пигмента: самые короткие из них содержат коротковолновый пигмент, а самые длинные-длинноволновой. Эберли предположила, что это может быть одним из механизмов борьбы с хроматической аберрацией. Вследствие хроматической аберрации резкое изображение средневолновых излучений расположено глубже (дальше от хрусталика) резкого изображения коротковолнового излучения, а фокус для длинноволновых излучений локализован еще дальше.

Достаточно расположить коротко-, средне- и длинноволновые рецепторы на соответствующих уровнях, чтобы все части спектрального излучения фокусировались на рецепторах одинаково резко. Этим, возможно, и объясняется то, что в сетчатке рыб одиночные колбочки с короткими члениками содержат коротковолновый пигмент, а у двойной колбочки наиболее длинный членик содержит длинноволновый пигмент, а более короткий - коротко- или средневолновый пигмент. Двойные колбочки с равными по.длине члениками содержат один и тот же пигмент.

ωπς - глаз) - общее название нескольких зрительных пигментов человека и некоторых млекопитающих животных . Эти пигменты состоят из белковой молекулы , связанной с хромофором ретиналем . Содержатся в колбочках сетчатки глаза и обеспечивают цветовое зрение , в отличие от другого зрительного пигмента - родопсина , ответственного за сумеречное зрение .

Установлено, что в состав зрительных пигментов входят опсины . Различные опсины различаются аминокислотами в составе молекул, и поглощают свет в несколько различном диапазоне длин волн , как ретиналь -связанные молекулы.

Впервые существование колбочкового пигмента (косвенным образом) было обнаружено Джорджем Уолдом , который и дал ему название йодопсин . . В 1967 г. за эти работы ему была присуждена Нобелевскую премию по физиологии и медицине .

Ещё Гельмгольц полагал, что в «концевых аппаратах волокон зрительного нерва» (фоторецепторах сетчатки) должны находится три рода фотохимически разлагаемых веществ, имеющих разную чувствительность по отношению к разным частям спектра. .

Согласно господствующей в современной науке трёхкомпонентной теории зрения считается, что существует три вида этого пигмента и сетчатка соответственно содержит три вида колбочек, которые чувствительны к голубому, зелёному и красному свету. Соответственно йодопсин, находящийся в колбочках глаза, состоит из трёх пигментов - хлоролаб , эритролаб и цианолаб ; первый из них поглощает лучи, соответствующие жёлто-зелёной (полоса поглощения 450-630 нм), второй - жёлто-красной (500-700 нм) и третий - сине-зелёной (500-700 нм) части видимого спектра .

Виды зрительных пигментов

Первые попытки найти три пигмента и, как предполагалось три типа колбочек (исходя из предположений трёхкомпонентной гипотезы зрения, что в каждой колбочке содержится только один пигмент) проводились Раштоном который довёл до совершенства методику денситометрии для прижизненного измерения коэффициентов поглощения света с различной длиной волны - в слое фоторецепторов сетчатки. Было показано, что у цветоаномалов отсутствует один из пигментов, имеющихся у людей с нормальным зрением: «эритролаб» (максимум около 585 нм.) у протанопа и «хлоролаб» (максимум около 540 нм.) - у дейтеранопа.

Следует отметить, что применяя термин «приёмник», в одних случаях рассматривают всю совокупность фоторецепторов с одинаковой спектральной чувствительностью в качестве одного приёмника ; в других случаях обсуждают вопрос о том, содержит ли каждая фовеальная колбочка три приёмника или только один. При этом не нарушается строгость понятия «приёмник», которое в таком случае не включает в себя конкретных морфологических особенностей..

Следующим шагом в этом направлении явилось исследование фотопигментов, содержащихся в отдельных колбочках человека и макаки. Размеры фовеальных колбочек слишком малы, чтобы они могли служить объектом исследования, и все полученные данные касаются только парафовеальных колбочек. Каждая колбочка, по крайней мере внефовеальная, содержит, видимо, лишь один из пигментов или преимущественно один из них.

Современные методы исследований фотопигментов колбочек

Денситометрия клеток сетчатки глаза

→ денситометрии , может быть следующей:

Если первые попытки найти три пигмента и, как предполагалось три типа колбочек проводились Раштоном который довёл до совершенства методику Денситометрии для измерения коэффициентов поглощения света с различной длиной волны - в слое фоторецепторов сетчатки и было показано, что у цветоаномалов отсутствует один из пигментов, имеющихся у людей с нормальным зрением: «эритролаб» (максимум около 585 нм.) у протанопа и «хлоролаб» (максимум около 540 нм.) - у дейтеранопа, то сейчас при помощи специальных методов динстометрии с применением современных денситометров учёным удаётся определить работу колбочек и палочек в состоянии нормальной деятельности и диагностике их заболеваний.

См. также

Источники

Литература

  • Хохлова Т. В. Современные представления о зрении млекопитающих // Журнал общей биологии. Том 73, 2012. № 6, Ноябрь-декабрь. Стр. 418-434.