Что такое атмосферное давление в географии. Нормальное атмосферное давление

Усредненная масса 1 м 3 воздуха на уровне моря при температуре окружающей среды 4°С равна 1 кг 300 г. Это подтверждает существование атмосферного давления. Все живое, включая здорового человека, не чувствуют этого давления в связи с тем, что оно находится в равновесии с внутренним давлением организмов.

Давление атмосферного воздуха систематически оценивается на метеорологических станциях. Для измерения давления атмосферы применяются барометры. Различают ртутные и пружинные (анероиды) барометры. Единицами измерения являются паскали (Па). За нормальную величину атмосферного давления принято давление атмосферы на широте 45° при температуре 4°С на высоте 0 м над уровнем моря. Нормальное давление равняется 1013 гПа, или 1 атмосфере, или 760 мм ртутного столба. Доказано, что с высотой атмосферное давление уменьшается. На каждые 8 м высоты на 1 гПа давление становится меньше. С учетом знания давления у земной поверхности и на определенной высоте, составляя простое уравнение, можно вычислить эту высоту. К примеру, разность давлений в 200 Па значит, что измерение давления проводилось на высоте 1600 м.

Определение и показатели

Атмосферное давление определяется не только высотой над уровнем моря, но и плотностью воздуха. Теплый воздух менее плотный и легче холодного. В определенной местности может быть высокое либо низкое давление атмосферы из-за господства разных воздушных масс. Автоматические устройства (барографы), размещенные на метеостанциях или в пунктах наблюдения, оценивают давление воздуха.

Затем показатели измерительных приборов наносятся на карту. Точки с обозначением одинакового давления соединяются, и получаются изобары – линии, демонстрирующие, как давление распределяется по поверхности Земли.

При изучении изобар были выявлены определеннее закономерности. Так, давление атмосферы непостоянно. Оно изменяется зонально от экватора к северному и южному полюсам. В тропических, полярных широтах и над океанами давление обычно повышенное, в экваториальном поясе пониженное, а в областях с умеренным климатом изменчивое соответственно временам года.

В летний период над сушей умеренного пояса отмечается пониженное давление, а в зимний, наоборот, - повышенное. Это объясняется просто. Летом над сушей теплый и менее плотный воздух, тогда как зимой он становится холоднее и плотнее.

Похожие материалы:

Если погода меняется, плохо чувствуют себя и больные гипертонией. Рассмотрим, как влияет атмосферное давление на гипертоников и метеозависимых людей.

Метеозависимые и здоровые люди

Здоровые люди никак не ощущают какие-либо изменения погоды. У метеозависимых появляются такие симптомы:

  • Головокружение;
  • Сонливость;
  • Апатия, вялость;
  • Суставная боль;
  • Тревога, страх;
  • Нарушения функции ЖКТ;
  • Колебания артериального давления.

Зачастую самочувствие ухудшается осенью, когда наблюдается обострение простудных, хронических болезней. При отсутствии каких-либо патологий метеочувствительность проявляется недомоганием.

В отличие от здоровых, метеозависимые люди реагируют не только на колебания атмосферного давления, но и на повышение влажности, внезапное похолодание или потепление. Причиной этому зачастую являются:

  • Низкая физическая активность;
  • Наличие болезней;
  • Падение иммунитета;
  • Ухудшение состояния ЦНС;
  • Слабые кровеносные сосуды;
  • Возраст;
  • Экологическая обстановка;
  • Климат.

В результате ухудшается способность организма быстро приспосабливаться к изменениям погодных условий.

Если атмосферное давление повышенное (выше 760 мм рт. ст.), ветер и осадки отсутствуют, говорят о наступлении антициклона. В этот период нет резких перепадов температуры. В воздухе повышается количество вредных примесей.

Антициклон негативно действует на гипертоников . Увеличение атмосферного давления приводит к повышению АД. Снижается работоспособность, появляются пульсация и боли в голове, сердечные боли. Другие симптомы отрицательного влияния антициклона:

  • Учащение сердцебиения;
  • Слабость;
  • Шум в ушах;
  • Покраснения лица;
  • Мелькание «мушек» перед глазами.

В крови снижается число лейкоцитов, что повышает риск развития инфекций.

Особенно подвержены воздействию антициклона пожилые люди с хроническими сердечно-сосудистыми болезнями . При повышении атмосферного давления увеличивается вероятность осложнения гипертонии - криза, особенно, если АД повышается до показателей 220/120 мм рт. ст. Возможно развитие прочих опасных осложнений (эмболия, тромбоз, кома).

Плохо влияет на больных гипертонией и пониженное атмосферное давление - циклон. Он характеризуется пасмурной погодой, осадками, повышенной влажностью. Давление воздуха падает ниже 750 мм рт. ст. Циклон оказывает следующее воздействие на организм: дыхание делается более частым, учащается пульс, однако, сила сердечных ударов сокращается. У некоторых людей появляется одышка.

При низком давлении воздуха падает и АД. С учётом того, что гипертоники принимают препараты для снижения давления, циклон плохо влияет на самочувствие. Появляются такие симптомы:

  • Головокружение;
  • Сонливость;
  • Боль в голове;
  • Упадок сил.

В некоторых случаях наблюдается ухудшение работы желудочно-кишечного тракта.

При повышении атмосферного давления больным гипертонией и метеозависимым людям следует избегать активных физических нагрузок. Надо больше отдыхать. Рекомендуется низкокалорийный рацион, содержащий повышенное количество фруктов.

Даже «запущенную» гипертонию можно вылечить дома, без операций и больниц. Просто не забывайте один раз в день…

Если антициклон сопровождается жарой, так же необходимо исключить физические нагрузки. Если есть возможность, надо находиться в помещении с кондиционером. Будет актуальной низкокалорийная диета. Увеличьте в рационе количество продуктов, богатых калием.

Читайте также: Какими осложнениями опасна гипертоническая болезнь

Чтобы привести в норму артериальное давление при пониженном атмосферном, врачи рекомендуют увеличить объём употребляемой жидкости. Пейте воду, настои лекарственных трав. Необходимо уменьшить физическую нагрузку, больше отдыхать.

Хорошо помогает крепкий сон. Утром можно позволить чашку напитка, содержащего кофеин. В течение дня надо несколько раз измерять давление.

(adsbygoogle = window.adsbygoogle || ).push({});

Влияние давления и перемены температуры

Немало проблем со здоровьем могут доставить гипертоникам и перемены температуры воздуха. В период антициклона, сочетающегося с жарой, значительно повышается риск кровоизлияний в мозг, поражений сердца.

Из-за высокой температуры и повышенной влажности уменьшается содержание кислорода в воздухе. Особенно плохо такая погода влияет на пожилых людей.

Зависимость АД от атмосферного давления не так сильна, когда жара сочетается с небольшой влажностью и нормальным либо слегка повышенным давлением воздуха.

Однако в некоторых случаях такие погодные условия становятся причиной сгущения крови. Это усиливает риск появления тромбов и развития инфарктов, инсультов.

Самочувствие гипертоников ухудшится, если атмосферное давление повышается одновременно с резким понижением температуры окружающей среды. При повышенной влажности, сильном ветре развивается гипотермия (переохлаждение). Возбуждение симпатического отдела нервной системы вызывает уменьшение теплоотдачи и усиление теплопродукции.

Сокращение теплоотдачи вызвано снижением температуры тела из-за спазма сосудов. Процесс способствует повышению термического сопротивления организма. Для защиты от переохлаждения конечностей, кожи лица сужаются сосуды, которые находятся в этих частях тела.

Если охлаждение организма очень резкое, развивается стойкий сосудистый спазм. Это может вызвать повышение АД. К тому же, резкое похолодание меняет состав крови, в частности, сокращается количество защитных белков.

Над уровнем моря

Как известно, чем выше от уровня моря, тем меньше плотность воздуха и ниже атмосферное давление. На высоте 5 км оно понижается примерно в 2 р. Влияние давления воздуха на АД человека, находящегося высоко над уровнем моря (например, в горах), проявляется такими признаками:

  • Учащение дыхания;
  • Ускорение ЧСС;
  • Боль в голове;
  • Приступ удушье;
  • Носовые кровотечения.

Читайте также: Чем грозит высокое глазное давление

В основе негативного воздействия пониженного давления воздуха лежит кислородное голодание, когда организм получает меньше кислорода. В дальнейшем происходит адаптация, и самочувствие становится нормальным.

Человек, который постоянно проживает в такой местности, никак не ощущает воздействие пониженного атмосферного давления. Следует знать, что у гипертоников при подъёме на высоту (например, при перелетах) может резко меняться АД, что грозит потерей сознания.

Под землей

Под землей и водой давление воздуха повышено. Его влияние на артериальное давление прямо пропорционально расстоянию, на которое надо спуститься.

Появляются следующие симптомы: дыхание делается глубоким и редким, ЧСС уменьшается, но незначительно. Слегка немеет кожный покров, слизистые становятся сухими.

Организм гипертоника, как и обычного человека, лучше приспосабливается к изменениям атмосферного давления, если они происходят медленно.

Гораздо более тяжёлые симптомы развиваются из-за резкого перепада: повышения (компрессии) и снижения (декомпрессии). В условиях повышенного давления атмосферы работают шахтёры, водолазы.

Они спускаются и поднимаются под землю (под воду) через шлюзы, где давление повышается/понижается постепенно. При повышенном атмосферном давлении в крови растворяются газы, содержащиеся в воздухе. Этот процесс называется «сатурация». При декомпрессии они выходят из крови (десатурация).

Если человек опустится на большую глубину под землю или под воду в нарушение режима вышлюзования, организм перенасытится азотом. Разовьется кессонная болезнь, при которой пузырьки газа проникают в сосуды, вызывая множественные эмболии.

Первые симптомы патологии болезни - мышечные, суставные боли. В тяжёлых случаях лопают барабанные перепонки, кружится голова, развивается лабиринтный нистагм. Кессонная болезнь иногда заканчивается летальным исходом.

Метеопатия

Метеопатией называется негативная реакция организма на перемены погоды. Симптомы варьируются от лёгкого недомогания до тяжёлых нарушений работы миокарда, которые могут вызвать необратимые поражения тканей.

Интенсивность и длительность проявлений метеопатии зависят от возраста, комплекции, наличия хронических заболеваний. У некоторых недомогания продолжаются до 7 дн. По данным медицинской статистики метеопатия есть у 70% людей с хроническими недугами и у 20% здоровых.

Реакция на перемену погоды зависит от степени чувствительности организма. Первая (начальная) стадия (или метеочувствительность) характеризуется небольшим ухудшением самочувствия, не подтверждающимся клиническими исследованиями.

Вторая степень называется метеозависимость, она сопровождается изменениями АД и ЧСС. Метеопатия – это наиболее тяжёлая третья степень.

При гипертонии, сочетающейся с метеозависимостью, причиной ухудшения самочувствия могут стать не только колебания атмосферного давления, но и другие изменения окружающей среды. Таким больным нужно обращать внимание на погодные условия и прогнозы синоптиков. Это позволит вовремя принять меры, рекомендованные врачом.

  • 5. Методы измерения температуры воздуха и оценки температурных условий
  • 5.2. Изучение температурных условий
  • Результаты изучения температурных условий в учебной аудитории
  • 6. Гигиеническое значение, методы измерения и оценки влажности воздуха
  • 6.1. Гигиеническое значение и оценка влажности воздуха
  • Максимальное напряжение водяных паров при разных температурах воздуха,
  • Максимальное напряжение водяных паров надо льдом при температурах ниже 0о,
  • 6.2. Измерение влажности воздуха
  • Величины психрометрических коэффициентов а в зависимости от скорости движения воздуха
  • (При скорости движения воздуха 0,2 м/с)
  • 7. Гигиеническое значение, методы измерения и оценки направления и скорости движения воздуха
  • 7.1. Гигиеническое значение движения воздуха
  • 7.2. Приборы для определения направления и скорости движения воздуха
  • Скорость движения воздуха (при условии скорости менее 1 м/с) с учетом поправок на температуру воздуха при определении с помощью кататермометра
  • Скорость движения воздуха (при условии скорости более 1 м/с) при определении с помощью кататермометра
  • Шкала скорости движения воздуха в баллах
  • 8. Гигиеническое значение, методы измерения и оценки теплового (инфракрасного) излучения
  • 8.1. Гигиеническое значение теплового (инфракрасного) излучения
  • Соотношение прямой и рассеянной солнечной радиации, %
  • Пределы переносимости человеком тепловой радиации
  • 8.2. Приборы для измерения и методы оценки лучистой энергии
  • Относительная степень черноты некоторых материалов, в долях единицы
  • 9. Методы комплексной оценки метеорологических условий и микроклимата помещений различного назначения
  • 9.1. Методы комплексной оценки метеорологических условий и микроклимата при положительных температурах
  • Различные сочетания температуры, влажности и подвижности воздуха, соответствующие эффективной температуре 18,8
  • Результирующей температур по основной шкале
  • Результирующей температур по нормальной шкале
  • 9.2. Методы комплексной оценки метеорологических условий и микроклимата при отрицательных температурах
  • Вспомогательная таблица для определения теплового самочувствия (условной температуры) методом, рекомендуемым для населения
  • Ветрохолодовой индекс (вхи)
  • 10. Методы физиолого-гигиенической оценки теплового состояния организма человека
  • Тепловое самочувствие военнослужащих до и после проведения коррекции рационов питания с целью повышения резистентности организма к холодовому воздействию
  • Потери воды организмом человека потоотделением (г/ч) при различных температурах и относительной влажности воздуха
  • 11. Физиолого-гигиеническая оценка атмосферного давления
  • 11.1. Общие гигиенические аспекты значения атмосферного давления
  • Характеристика форм декомпрессионной болезни по тяжести заболевания
  • Зоны высоты над уровнем моря в зависимости от реакции организма человека
  • 11.2. Единицы измерения и приборы для измерения атмосферного давления
  • Единицы измерения атмосферного давления
  • Соотношение единиц измерения барометрического давления
  • Приборы для измерения атмосферного давления.
  • 12. Гигиеническое значение, методы измерения интенсивности ультрафиолетового излучения и выбор доз искусственного облучения
  • 12.1. Гигиеническое значение ультрафиолетовой радиации
  • 12.2. Методы определения интенсивности ультрафиолетовой радиации и ее биодозы при профилактическом и лечебном облучении
  • Основные характеристики приборов серии «Аргус»
  • 13. Аэроионизация; ее гигиеническое значение и методы измерения
  • 14. Приборы для измерения показателей метеорологических и микроклиматических условий с совмещенными функциями
  • Режимы работы прибора ивтм -7
  • Требования к измерительным приборам
  • 15. Нормирование некоторых физических факторов среды обитания в различных условиях жизнедеятельности человека
  • Характеристика отдельных категорий работ
  • Допустимые величины интенсивности теплового облучения поверхности тела
  • Критерии допустимого теплового состояния человека (верхняя граница)*
  • Критерии допустимого теплового состояния человека (нижняя граница)*
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более трех часов за рабочую смену
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более одного часа за рабочую смену
  • Допустимая продолжительность пребывания работающих в охлаждающей среде при теплоизоляции одежды 1 кло*
  • Гигиенические требования к теплозащитным показателям
  • (Суммарное тепловое сопротивление) головных уборов, рукавиц и обуви
  • Применительно к метеорологическим условиям различных климатических регионов
  • (Физическая работа категории iIа, время непрерывного пребывания на холоде – 2 часа)
  • Значения тнс-индекса (оС), характеризующие микроклимат как допустимый в теплый период года при соответствующей регламентации продолжительности пребывания
  • Рекомендуемые величины интегрального показателя тепловой нагрузки среды
  • Классы условий труда по показателям микроклимата для рабочих помещений
  • Охлаждающим микроклиматом
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ iIа-iIб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Па-Пб
  • Взаимосвязь между средневзвешенной температуры кожи человека, его физиологическим состоянием и типом погоды и оценка типов погоды для отдыха, лечения и туризма
  • Характеристика классов погоды момента при положительной температуре воздуха
  • Характеристика классов погоды момента при отрицательной температуре воздуха
  • Физиолого-климатическая типизация погод теплого времени года
  • Журнал регистрации сведений о погодных условиях в______________
  • Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий
  • Гигиенические требования к параметрам микроклимата основных помещений закрытых плавательных бассейнов
  • Уровни уф-а излучения (400-315 нм)
  • 2.2.4. Гигиена труда. Физические факторы
  • 2. Нормируемые показатели аэроионного состава воздуха
  • 3. Требования к проведению контроля аэроионного состава воздуха
  • 4. Требования к способам и средствам нормализации аэроионного состава воздуха
  • Термины и определения
  • Библиографические данные
  • Классификация условий труда по аэроионному составу воздуха
  • 16. Ситуационные задачи
  • 16.1. Ситуационные задачи по расчету прогноза состояния здоровья людей в зависимости от температуры наружного воздуха
  • Ультрафиолетового облучения с помощью биодозиметра
  • 16.5. Ситуационные задачи по определению регламентов облучения ультрафиолетовым излучением в фотариях
  • 17. Литература, нормативные и методические материалы
  • 17.1. Библиография
  • 17.2. Нормативные и методические документы
  • Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений: СанПиН 2.2.4.1294-03
  • Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров: СанПиН 2.1.3.1375-03.
  • Психрометрическая будка (будка Вильде) с закрытой психрометрической цинковой клеткой
  • Психрометрическая будка (будка Вильде, английская будка)
  • Вспомогательная величина а при определении средней радиационной температуры табличным методом в.В. Шиба
  • Вспомогательная величина в при определении средней радиационной температуры табличным методом в.В. Шиба
  • Нормальная шкала эффективных температур
  • Единицы измерения атмосферного давления

    Обозначение единицы

    Соотношение с единицей системы СИ –

    паскалем (Па) и другими

    Миллиметр ртутного столба

    (мм рт. ст.)

    1 мм. рт. ст. = 133,322 Па

    Миллиметр водного столба

    (мм вод. ст.)

    1 мм вод. ст. = 9,807 Па

    Атмосфера техническая (ат)

    1 ат = 9,807  10 4 Па

    Атмосфера физическая (атм)

    1 атм = 1,033 ат = 1,013  10 4 Па

    1 тор = 1 мм рт. ст.

    Миллибар (мб)

    1 мб = 0,7501 мм рт. ст. = 100 Па

    Таблица 24

    Соотношение единиц измерения барометрического давления

    мм рт. ст.

    мм вод. ст.

    Паскаль, Па

    Атмосфера нормальная, атм

    Миллиметр ртутного столба,

    мм рт. ст.

    Миллибар, мб

    Миллиметр водного столба, мм вод. ст.

    Из приведенных в таблицах 23 и 24 единиц измерения наибольшее распространение в России получили мм. рт. ст. имб . Для удобства пересчетов в необходимых случаях можно использовать следующее соотношение:

    760 мм рт. ст. = 1013мб = 101300Па (36)

    Более простой способ:

    Мб = мм. рт. ст.(37)

    Мм рт. ст. = мб(38)

    Приборы для измерения атмосферного давления.

    В гигиенических исследованиях применяются два типа барометров :

      жидкостные барометры ;

      металлические барометры – анероидные .

    Принцип работы различных модификаций жидкостных барометров основан на том, что атмосферное давление уравновешивает определенной высоты столб жидкости в запаянной с одного конца (верхнего) трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы.

    Наибольшее распространение получили ртутные барометры , так как высокий удельный вес жидкой ртути позволяет сделать прибор более компактным, что объясняется уравновешиванием давления атмосферы менее высоким столбом ртути в трубке.

    Используются три системы ртутных барометров:

      чашечные ;

      сифонные ;

      сифонно-чашечные .

    Указанные системы ртутных барометров схематически представлены на рисунке 35.

    Станционные чашечные барометры (рисунок 35). В этих барометрах в чашку, заполненную ртутью, помещается запаянная сверху стеклянная трубка. В трубке над ртутью образуется так называемая торичеллиевая пустота. Воздух в зависимости от состояния обусловливает то или иное давление на ртуть, находящуюся в чашке. Таким образом, уровень ртути устанавливается на ту или иную высоту в стеклянной трубке. Именно данная высота будет уравновешивать давление воздуха на ртуть в чашке, а значит отражать атмосферное давление.

    Высоту уровня ртути, соответствующую атмосферному давлению, определяют по так называемой компенсированной шкале, имеющейся на металлической оправе барометра. Изготавливаются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб.

    Рис. 35. Чашечный барометр (слева)

    А – шкала барометра; Б – винт; В – термометр; Г – чашечка со ртутью

    Ртутный сифонный барометр (справа)

    А – верхнее колено; В – нижнее колено; Д – нижняя шкала; Е – верхняя шкала; Н – термометр; а – отверстие в трубке

    В отдельных модификациях имеются две шкалы – в мм рт. ст. и мб. Десятые доли мм рт. ст. или мб отсчитываются по подвижной шкале – нониусу. Для этого необходимо винтом установить нулевое деление шкалы нониуса на одной линии с вершиной мениска ртутного столба, отсчитать число целых делений миллиметров ртутного столба по шкале барометра и число десятых до-лей миллиметра ртутного столба до первой отметки шкалы нониуса, совпадающей с делением основной шкалы.

    Пример. Нулевое деление шкалы нониуса находится между 760 и 761 мм рт. ст. основной шкалы. Следовательно, число целых делений равно 760 мм рт. ст. К этой цифре необходимо прибавить число десятых долей миллиметра ртутного столба, отсчитанных по шкале нониуса. Первым с делением основной шкалы совпадает 4-е деление шкалы нониуса. Барометрическое давление равно 760 + 0,4 = 760,4 мм рт. ст.

    Как правило, в чашечные барометры встроен термометр (ртутный или спиртовый в зависимости от предполагаемого диапазона температуры воздуха при исследованиях), так как для получения окончательного результата необходимо специальными расчетами привести давление к стандартным условиям температуры (0С) и барометрического давления (760 мм рт. ст.).

    В чашечных экспедиционных барометрах перед наблюдением предварительно с помощью специального винта, расположенного в нижней части прибора, устанавливают уровень ртути в чашке на нулевую отметку.

    Сифонные и сифонно-чашечные барометры (рисунок 35). В этих барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) коленах трубки. Данный барометр позволяет производить измерение давления с точностью до 0,05мм рт. ст . При помощи винта в нижней части приборов уровень ртути в коротком (открытом) колене трубки приводят к нулевой точке, а затем отсчитывают показания барометра.

    Сифонно-чашечный инспекторский барометр. Данный прибор имеет две шкалы: слева в мб и справа в мм рт. ст. Для определения десятых долей мм рт. ст. служит нониус. Найденные значения атмосферного давления, как и при работе с другими жидкостными барометрами, необходимо с помощью вычислений или специальных таблиц привести к 0С.

    На метеорологических станциях в показания барометров вводят не только температурную поправку, но и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.

    Устанавливать барометры следует в отдалении или изолированно от источников теплового излучения (солнечное излучение, нагревательные приборы), а также в отдалении от дверей и окон.

    Металлический барометр-анероид (рисунок 36). Данный прибор особенно удобен при проведении исследований в экспедиционных условиях. Однако этот барометр перед использованием должен быть выверен по более точному ртутному барометру.

    Рис. 36. Барометр-анероид

    Рис. 37. Барограф

    Принцип устройства и действия барометра-анероида очень прост. Металлическая подушечка (коробка) с гофрированными (для большей эластичности) стенками, из которой удален воздух до остаточного давления 50-60 мм рт. ст., под воздействием давления воздуха изменяет свой объем и в результате деформируется. Деформация передается по системе рычажков стрелке, которая и указывает на циферблате атмосферное давление. На циферблате барометра анероида вмонтирован изогнутой формы термометр в связи с необходимостью, как указывалось выше, приведения результатов измерения к 0С. Градуировка циферблата может быть в мб или в мм рт. ст. В некоторых модификациях барометра-анероида имеются две шкалы – как в мб, так и в мм рт. ст.

    Анероид-высотомер (альтиметр). В измерении высоты по уровню атмосферного давления заложена закономерность, согласно которой между давлением воздуха и высотой имеется зависимость, весьма близкая к линейной. То есть при подъеме на высоту пропорционально снижается атмосферное давление.

    Данный прибор предназначен для измерения атмосферного давления именно на высоте и имеет две шкалы. На одной из них нанесены величины давления в мм рт. ст. или мб, на другой – высота в метрах. На летательных аппаратах применяют альтиметры с циферблатом, на котором по шкале определяется высота полета.

    Барограф (барометр-самописец). Данный прибор предназначен для непрерывной регистрации атмосферного давления. В гигиенической практике применяются металлические (анероидные) барографы (рисунок 37). Под влиянием изменений атмосферного давления пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо с незасыхающими специальными чернилами. При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху. При уменьшении давления анероидные коробки с помощью помещенных внутри их пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в мм рт. ст. или мб бумажной ленте, помещенной на цилиндрический вращающийся с помощью механического завода барабан. Используются барографы с недельным или суточным заводом с соответствующими градуированными лентами в зависимости от цели, задач и характера исследований. Выпускаются барографы с электрическим приводом, вращающим барабан. Однако на практике данная модификация прибора менее удобна, так как ограничивается его использование в экспедиционных условиях. Для устранения температурных влияний на показания барографа в них вставляется биметаллические компенсаторы, автоматически осуществляющие коррекцию (поправку) движения рычажков в зависимости от температуры воздуха. Перед началом работы рычажок с пером с помощью специального винта устанавливается в исходное положение, соответствующее времени, обозначенном на ленте и на уровень давления, измеренный точным ртутным барометром.

    Чернила для записи барограмм можно приготовить по следующей прописи:

    Приведение объема воздуха к нормальным условиям (760 мм рт. ст., 0 С). Данный аспект измерения барометрического давления весьма важен при измерении концентраций загрязняющих веществ в воздухе. Игнорирование указанного аспекта может обусловить значительные ошибки в расчетах концентраций вредных веществ, которые могут достигать 30 и более процентов.

    Приведение объема воздуха к нормальным условиям производится по формуле:

    Пример . Для измерения концентрации пыли в воздухе через бумажный фильтр с помощью электрического аспиратора пропущено 200 л воздуха. Температура воздуха в период его аспирации составляла- +26С, барометрическое давление - 752 мм рт. ст. Необходимо привести объем воздуха к нормальным условиям, то есть к 0С и 760 мм рт. ст.

    Подставляем в формулу Х значения соответствующих параметров примера и рассчитываем искомый объем воздуха при нормальных условиях:

    Таким образом, при расчете концентрации пыли в воздухе необходимо учитывать объем воздуха именно 180,69 л , а не 200л .

    Для упрощения расчетов объема воздуха при нормальных условиях можно пользоваться поправочными коэффициентами на температуру и давление (таблица 25) или рассчитанными готовыми величинами формулы 39 и(таблица 26).

    Таблица 25

    Поправочные коэффициенты на температуру и давление для приведения объема воздуха к нормальным условиям

    (температура 0 о

    Барометрическое давление, мм рт. ст.

    Окончание таблицы 25

    Барометрическое давление, мм рт. ст.

    Таблица 26

    Коэффициенты для приведения объемов воздуха к нормальным условиям

    (температура 0 о С, барометрическое давление 760 мм рт. ст.)

    мм рт. ст.

    мм рт. ст.

    Про атмосферное давление упоминают даже в прогнозах погоды, но какова его природа? От чего зависит низкое и высокое атмосферное давление? Как его изменение отражается на здоровье человека?

    Что это такое?

    Ещё в 1638 году люди плохо представляли, что такое явление, вообще, существует, пока Герцог Тосканский не решил украсить Флоренцию фонтанами на большой высоте. Его попытка с треском провались, так как выше десяти метров вода не поднималась. Тогда и наступило время первых опытов в этой области.

    С развитием науки стало ясно, что давление является физической величиной, которая сообщает о количестве силы, перпендикулярно примененной к единице площади какой-либо поверхности. Атмосфера - не исключение. На нашу планету она давит при помощи воздуха, который присутствует повсеместно.

    Масса окружающего нас воздуха в миллионы раз меньше земной, но этого вполне достаточно, чтобы все предметы и существа испытывали на себе его влияние. Ежедневно на нас давит около пятнадцати тонн воздуха, однако мы не можем этого почувствовать, ведь внутреннее давление человеческого тела такое же, как и атмосферное.

    Низкое и высокое атмосферное давление

    Как и любую физическую величину, давление можно измерить. В Международной системе единиц для этого используют паскаль (Па), в России также применяют бары и миллиметры ртутного столба.

    В качестве среднего значения принят показатель при температуре ноль градусов на уровне моря на широте 45 градусов. Он обозначается как нормальное атмосферное давление и составляет 760 миллиметров ртутного столба или 101325 паскалей.

    От чего зависит атмосферное давление? В первую очередь от количества воздуха на единицу площади: чем его меньше, тем ниже давление и наоборот. Оно напрямую зависит от высоты. На больших высотах воздух более разряженный, поэтому его показатель с поднятием уменьшается. На высоте 5 км его сила меньше всего в два раза, на высоте 20 км - примерно в 18 раз.

    Давление склонно изменяться в разное время суток и сезоны. Важным фактором является температура. Ночью, когда температура падает, давление чуть более низкое, чем днем. На континентах высокое атмосферное давление отмечается в зимний период, низкое - в летний.

    Зональность давления

    Области Земного шара прогреваются неодинаково, в результате распределение давления происходит зонально. В одних местах воздух нагревается и уменьшает свое давление. Поднимаясь вверх и постепенно охлаждаясь, он перемещается на соседние участки, увеличивая давление там.

    Подобное перераспределение воздушных масс хорошо заметно в экваториальном поясе, где из-за высоких температур давление всегда пониженное, а в соседних тропических поясах оно обычно повышенное. В Антарктиде и Северном полюсе постоянное высокое давление является следствием притока воздуха с умеренных широт.

    Как уже говорилось выше, давлению свойственны сезонные колебания, однако эти изменения не слишком значительны. В целом показатели давления являются устойчивыми: на планете постоянно существуют зоны повышенного и пониженного давления.

    Влияние высокого атмосферного давления

    Ощутить силу этого явления на себе человек может, поднимаясь в горы. Многим знакомо закладывание ушей, когда преодолеваешь порой незначительные подъемы. Почувствовать его можно, нырнув глубоко под воду, кстати, максимальная глубина такого погружения без специального снаряжения составляет не больше 170 метров (хотя и это довольно рискованно).

    В повседневной жизни человек также ощущает изменения давления, особенно если происходят резкие перепады. Высокое атмосферное давление сопровождается ясной погодой и сухостью, вредные вещества в воздухе чувствуются резче. В результате обостряются аллергии и проблемы с органами дыхания.

    Повышение давления ярко отражается на самочувствии гипертоников. Способствуя уменьшению лейкоцитов в крови, оно может ослабить иммунитет. Поэтому в периоды повышенного давления человеку сложнее бороться с инфекциями и другими заболеваниями.

    В о п р о с ы & О т в е т ы

    света : Чему равно атмосферное давление?

    Admin :

    Давлением называют физическую величину, характеризующую интенсивность нормальных (перпендикулярных к поверхности) сил F, с которыми одно тело действует на поверхность S другого. Например, фундамент на грунт, жидкость на стенки сосуда и т.п. Если силы распределены по поверхности равномерно, то P = F / S. Давление измеряется в паскалях (Па), атмосферах (атм), барах, а также в мм ртутного столба и др.

    Паскаль (gfcrfkm) - еденица измерения давления, названная в честь французского математика и физика Блеза Паскаля. Один поскаль равен давлению, вызванному силой в 1 ньютон, распределённой по поверхности равной 1 квадратному метру. Стоит сказать, что нормальное атмосферное давление принято считать равным 101 325 Па или 760 мм ртутного столба.

    Бар - единица измерения, название которой произошло от греческого слова "тяжесть", внесистемная. Один бар равен 100000 ньютону на квадратный метр. (в соответствии с ГОСТ 7664-61) Один бар также равен 750.06 мм ртутного столба.

    Миллиметр ртутного столба - еденица измерения атмосферного давления, примерно равная 133 Па. Эта еденица измерения давления появилась в связи с изобретением барометра (fhjvtnh) для измерения атмосферного давления. В барометре используется именно ртуть, т.к. именно ртуть имеет очень высокую плотность (более 13 тонн на кубический метр) и низкое давление насыщенного пара при комнатной температуре.

    Атмосферой (атмасфера, fnvjcathf) как единицей измерения называют внесистемную единицу измерения давления, которая равна 101 325 Па и 760 мм ртутного столба, т.е. нормальному атмасферному давлению. Существуют стандартная атмосфера (физическая атмасфера) и техническая атмосфера. Они примерно равны, но используются в разных случаях.