Rješavanje jednačine 2 4. Rješavanje linearnih jednadžbi s primjerima

U 7. razredu matematike prvi put se susrećemo jednadžbe sa dvije varijable, ali se proučavaju samo u kontekstu sistema jednačina sa dvije nepoznanice. Zato iz vida ispada čitav niz problema u kojima se uvode određeni uslovi na koeficijente jednačine koji ih ograničavaju. Osim toga, zanemaruju se i metode rješavanja zadataka poput „Riješi jednadžbu prirodnim ili cijelim brojevima“, iako se takvi problemi sve češće susreću u materijalima Jedinstvenog državnog ispita i na prijemnim ispitima.

Koja će se jednačina zvati jednačina sa dvije varijable?

Tako, na primjer, jednačine 5x + 2y = 10, x 2 + y 2 = 20, ili xy = 12 su jednačine u dvije varijable.

Razmotrimo jednačinu 2x – y = 1. Ona postaje istinita kada su x = 2 i y = 3, pa je ovaj par varijabilnih vrijednosti rješenje dotične jednačine.

Dakle, rješenje bilo koje jednadžbe s dvije varijable je skup uređenih parova (x; y), vrijednosti varijabli koje ovu jednadžbu pretvaraju u pravu numeričku jednakost.

Jednačina sa dvije nepoznanice može:

A) imaju jedno rešenje. Na primjer, jednadžba x 2 + 5y 2 = 0 ima jedinstveno rješenje (0; 0);

b) imaju više rješenja. Na primjer, (5 -|x|) 2 + (|y| – 2) 2 = 0 ima 4 rješenja: (5; 2), (-5; 2), (5; -2), (-5; - 2);

V) nemaju rješenja. Na primjer, jednadžba x 2 + y 2 + 1 = 0 nema rješenja;

G) imaju beskonačno mnogo rješenja. Na primjer, x + y = 3. Rješenja ove jednačine će biti brojevi čiji je zbir jednak 3. Skup rješenja ove jednačine može se napisati u obliku (k; 3 – k), gdje je k bilo koji realan broj.

Glavne metode za rješavanje jednadžbi s dvije varijable su metode zasnovane na faktorskim izrazima, izolaciji potpunog kvadrata, korištenjem svojstava kvadratne jednačine, ograničenih izraza i metoda procjene. Jednačina se obično pretvara u oblik iz kojeg se može dobiti sistem za pronalaženje nepoznanica.

Faktorizacija

Primjer 1.

Riješite jednačinu: xy – 2 = 2x – y.

Rješenje.

Grupiramo termine u svrhu faktorizacije:

(xy + y) – (2x + 2) = 0. Iz svake zagrade vadimo zajednički faktor:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Imamo:

y = 2, x – bilo koji realan broj ili x = -1, y – bilo koji realan broj.

dakle, odgovor su svi parovi oblika (x; 2), x € R i (-1; y), y € R.

Jednakost nenegativnih brojeva nuli

Primjer 2.

Riješite jednačinu: 9x 2 + 4y 2 + 13 = 12(x + y).

Rješenje.

Grupisanje:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Sada se svaka zagrada može presavijati koristeći formulu kvadratne razlike.

(3x – 2) 2 + (2y – 3) 2 = 0.

Zbir dva nenegativna izraza je nula samo ako je 3x – 2 = 0 i 2y – 3 = 0.

To znači da je x = 2/3 i y = 3/2.

Odgovor: (2/3; 3/2).

Metoda procjene

Primjer 3.

Riješite jednačinu: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Rješenje.

U svakoj zagradi biramo ceo kvadrat:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Procijenimo značenje izraza u zagradama.

(x + 1) 2 + 1 ≥ 1 i (y – 2) 2 + 2 ≥ 2, tada je lijeva strana jednadžbe uvijek najmanje 2. Jednakost je moguća ako:

(x + 1) 2 + 1 = 1 i (y – 2) 2 + 2 = 2, što znači x = -1, y = 2.

Odgovor: (-1; 2).

Hajde da se upoznamo sa još jednom metodom za rešavanje jednačina sa dve varijable drugog stepena. Ova metoda se sastoji od tretiranja jednačine kao kvadrat u odnosu na neku varijablu.

Primjer 4.

Riješite jednačinu: x 2 – 6x + y – 4√y + 13 = 0.

Rješenje.

Rešimo jednačinu kao kvadratnu jednačinu za x. Nađimo diskriminanta:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Jednačina će imati rješenje samo kada je D = 0, odnosno ako je y = 4. Zamjenjujemo vrijednost y u originalnu jednačinu i nalazimo da je x = 3.

Odgovor: (3; 4).

Često u jednačinama sa dvije nepoznate one ukazuju ograničenja na varijable.

Primjer 5.

Riješite jednačinu cijelim brojevima: x 2 + 5y 2 = 20x + 2.

Rješenje.

Prepišimo jednačinu u obliku x 2 = -5y 2 + 20x + 2. Desna strana rezultirajuće jednačine kada se podijeli sa 5 daje ostatak od 2. Dakle, x 2 nije djeljiv sa 5. Ali kvadrat a broj koji nije djeljiv sa 5 daje ostatak od 1 ili 4. Dakle, jednakost je nemoguća i nema rješenja.

Odgovor: nema korijena.

Primjer 6.

Riješite jednačinu: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Rješenje.

Istaknimo kompletne kvadrate u svakoj zagradi:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Leva strana jednačine je uvek veća ili jednaka 3. Jednakost je moguća pod uslovom |x| – 2 = 0 i y + 3 = 0. Dakle, x = ± 2, y = -3.

Odgovor: (2; -3) i (-2; -3).

Primjer 7.

Za svaki par negativnih cijelih brojeva (x;y) koji zadovoljavaju jednadžbu
x 2 – 2xy + 2y 2 + 4y = 33, izračunaj zbroj (x + y). Molimo navedite najmanji iznos u svom odgovoru.

Rješenje.

Odaberimo kompletne kvadrate:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Pošto su x i y cijeli brojevi, njihovi kvadrati su također cijeli brojevi. Dobijamo zbroj kvadrata dva cijela broja jednak 37 ako dodamo 1 + 36. Dakle:

(x – y) 2 = 36 i (y + 2) 2 = 1

(x – y) 2 = 1 i (y + 2) 2 = 36.

Rješavajući ove sisteme i uzimajući u obzir da su x i y negativni, nalazimo rješenja: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Odgovor: -17.

Ne očajavajte ako imate poteškoća u rješavanju jednadžbi s dvije nepoznanice. Uz malo vježbe, možete se nositi sa bilo kojom jednačinom.

Imate još pitanja? Ne znate kako riješiti jednadžbe u dvije varijable?
Da biste dobili pomoć od tutora, registrujte se.
Prva lekcija je besplatna!

web stranicu, kada kopirate materijal u cijelosti ili djelomično, link na izvor je obavezan.

Jednačina s jednom nepoznatom, koja nakon otvaranja zagrada i donošenja sličnih članova, poprima oblik

ax + b = 0, gdje su a i b proizvoljni brojevi, se zove linearna jednačina sa jednom nepoznatom. Danas ćemo shvatiti kako riješiti ove linearne jednačine.

Na primjer, sve jednadžbe:

2x + 3= 7 – 0,5x; 0,3x = 0; x/2 + 3 = 1/2 (x – 2) - linearno.

Vrijednost nepoznate koja pretvara jednačinu u pravu jednakost naziva se odluka ili korijen jednačine .

Na primjer, ako u jednadžbi 3x + 7 = 13 umjesto nepoznatog x zamijenimo broj 2, dobićemo tačnu jednakost 3 2 +7 = 13. To znači da je vrijednost x = 2 rješenje ili korijen jednadžbe.

A vrijednost x = 3 ne pretvara jednačinu 3x + 7 = 13 u pravu jednakost, jer je 3 2 +7 ≠ 13. To znači da vrijednost x = 3 nije rješenje ili korijen jednačine.

Rješavanje bilo koje linearne jednadžbe svodi se na rješavanje jednadžbi oblika

ax + b = 0.

Pomerimo slobodni član sa leve strane jednačine udesno, menjajući predznak ispred b u suprotan, dobijamo

Ako je a ≠ 0, tada je x = ‒ b/a .

Primjer 1. Riješite jednačinu 3x + 2 =11.

Pomaknimo 2 s lijeve strane jednačine na desnu, mijenjajući predznak ispred 2 u suprotan, dobićemo
3x = 11 – 2.

Onda uradimo oduzimanje
3x = 9.

Da biste pronašli x, morate proizvod podijeliti sa poznatim faktorom, tj
x = 9:3.

To znači da je vrijednost x = 3 rješenje ili korijen jednačine.

Odgovor: x = 3.

Ako je a = 0 i b = 0, tada dobijamo jednačinu 0x = 0. Ova jednačina ima beskonačno mnogo rješenja, jer kada pomnožimo bilo koji broj sa 0 dobijamo 0, ali je b također jednako 0. Rješenje ove jednačine je bilo koji broj.

Primjer 2. Riješite jednačinu 5(x – 3) + 2 = 3 (x – 4) + 2x ‒ 1.

Proširimo zagrade:
5x – 15 + 2 = 3x – 12 + 2x ‒ 1.


5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.

Evo nekoliko sličnih pojmova:
0x = 0.

Odgovor: x - bilo koji broj.

Ako je a = 0 i b ≠ 0, tada dobijamo jednačinu 0x = - b. Ova jednadžba nema rješenja, jer kada pomnožimo bilo koji broj sa 0 dobijamo 0, ali b ≠ 0.

Primjer 3. Riješite jednačinu x + 8 = x + 5.

Grupirajmo pojmove koji sadrže nepoznate na lijevoj strani, a slobodne pojmove na desnoj strani:
x – x = 5 – 8.

Evo nekoliko sličnih pojmova:
0h = ‒ 3.

Odgovor: nema rješenja.

On Slika 1 prikazuje dijagram za rješavanje linearne jednadžbe

Hajde da napravimo opštu šemu za rešavanje jednačina sa jednom promenljivom. Razmotrimo rješenje primjera 4.

Primjer 4. Pretpostavimo da trebamo riješiti jednačinu

1) Pomnožite sve članove jednačine najmanjim zajedničkim višekratnikom nazivnika, jednakim 12.

2) Nakon smanjenja dobijamo
4 (x – 4) + 3 2 (x + 1) ‒ 12 = 6 5 (x – 3) + 24x – 2 (11x + 43)

3) Da biste odvojili pojmove koji sadrže nepoznate i slobodne pojmove, otvorite zagrade:
4x – 16 + 6x + 6 – 12 = 30x – 90 + 24x – 22x – 86.

4) Grupirajmo u jedan dio pojmove koji sadrže nepoznate, a u drugi - slobodne pojmove:
4x + 6x – 30x – 24x + 22x = ‒ 90 – 86 + 16 – 6 + 12.

5) Predstavimo slične pojmove:
- 22x = - 154.

6) Podijelimo sa – 22, dobijemo
x = 7.

Kao što vidite, korijen jednačine je sedam.

Generalno takav jednadžbe se mogu riješiti korištenjem sljedeće šeme:

a) dovesti jednačinu u njen celobrojni oblik;

b) otvorite zagrade;

c) grupirati članove koji sadrže nepoznatu u jednom dijelu jednačine, a slobodne članove u drugom;

d) dovesti slične članove;

e) rešiti jednačinu oblika ah = b, koja je dobijena donošenjem sličnih članova.

Međutim, ova šema nije neophodna za svaku jednačinu. Kada rješavate mnoge jednostavnije jednadžbe, morate početi ne od prve, već od druge ( Primjer. 2), treći ( Primjer. 13) pa čak i od pete faze, kao u primjeru 5.

Primjer 5. Riješite jednačinu 2x = 1/4.

Pronađite nepoznato x = 1/4: 2,
x = 1/8
.

Pogledajmo rješavanje nekih linearnih jednadžbi koje se nalaze na glavnom državnom ispitu.

Primjer 6. Riješite jednačinu 2 (x + 3) = 5 – 6x.

2x + 6 = 5 – 6x

2x + 6x = 5 – 6

Odgovor: - 0,125

Primjer 7. Riješite jednačinu – 6 (5 – 3x) = 8x – 7.

– 30 + 18x = 8x – 7

18x – 8x = – 7 +30

Odgovor: 2.3

Primjer 8. Riješite jednačinu

3(3x – 4) = 4 7x + 24

9x – 12 = 28x + 24

9x – 28x = 24 + 12

Primjer 9. Pronađite f(6) ako je f (x + 2) = 3 7

Rješenje

Pošto moramo pronaći f(6), a znamo f (x + 2),
onda je x + 2 = 6.

Rješavamo linearnu jednačinu x + 2 = 6,
dobijamo x = 6 – 2, x = 4.

Ako je x = 4 onda
f(6) = 3 7-4 = 3 3 = 27

Odgovor: 27.

Ako i dalje imate pitanja ili želite detaljnije razumjeti rješavanje jednačina, prijavite se za moje lekcije u RASPORED. Biće mi drago da vam pomognem!

TutorOnline također preporučuje gledanje nove video lekcije naše učiteljice Olge Aleksandrovne, koja će vam pomoći da razumijete i linearne jednadžbe i druge.

web stranicu, kada kopirate materijal u cijelosti ili djelomično, link na izvor je obavezan.


Hajde da analiziramo dve vrste rešenja sistema jednačina:

1. Rješavanje sistema metodom zamjene.
2. Rješavanje sistema sabiranjem (oduzimanjem) sistemskih jednačina po članu.

Da bi se riješio sistem jednačina metodom supstitucije morate slijediti jednostavan algoritam:
1. Express. Iz bilo koje jednačine izražavamo jednu varijablu.
2. Zamjena. Dobivenu vrijednost zamjenjujemo u drugu jednačinu umjesto izražene varijable.
3. Riješi rezultirajuću jednačinu s jednom promjenljivom. Pronalazimo rješenje za sistem.

Riješiti sistem metodom sabiranja (oduzimanja) pojam treba:
1. Odaberite varijablu za koju ćemo napraviti identične koeficijente.
2. Sabiramo ili oduzimamo jednačine, što rezultira jednačinom s jednom promjenljivom.
3. Riješi rezultirajuću linearnu jednačinu. Pronalazimo rješenje za sistem.

Rješenje sistema su tačke preseka grafova funkcija.

Razmotrimo detaljno rješenja sistema na primjerima.

Primjer #1:

Rešimo metodom zamene

Rješavanje sistema jednačina metodom zamjene

2x+5y=1 (1 jednadžba)
x-10y=3 (2. jednadžba)

1. Express
Vidi se da u drugoj jednačini postoji varijabla x sa koeficijentom 1, što znači da je varijablu x najlakše izraziti iz druge jednačine.
x=3+10y

2. Nakon što smo to izrazili, zamjenjujemo 3+10y u prvu jednačinu umjesto varijable x.
2(3+10y)+5y=1

3. Riješi rezultirajuću jednačinu s jednom promjenljivom.
2(3+10y)+5y=1 (otvorite zagrade)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Rešenje sistema jednačina su tačke preseka grafova, stoga treba da nađemo x i y, jer se presečna tačka sastoji od x i y. Nađimo x, u prvoj tački gde smo to izrazili zamenjujemo y.
x=3+10y
x=3+10*(-0,2)=1

Uobičajeno je da se zapisuju tačke na prvom mestu pišemo promenljivu x, a na drugom mestu promenljivu y.
Odgovor: (1; -0,2)

Primjer #2:

Rešimo metodom sabiranja (oduzimanja) po član.

Rješavanje sistema jednačina metodom sabiranja

3x-2y=1 (1 jednadžba)
2x-3y=-10 (2. jednadžba)

1. Biramo varijablu, recimo da biramo x. U prvoj jednačini varijabla x ima koeficijent 3, u drugoj - 2. Moramo učiniti koeficijente istim, za to imamo pravo pomnožiti jednačine ili podijeliti s bilo kojim brojem. Prvu jednačinu pomnožimo sa 2, a drugu sa 3 i dobijemo ukupan koeficijent 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2. Oduzmite drugu od prve jednačine da biste se riješili varijable x. Riješite linearnu jednačinu.
__6x-4y=2

5y=32 | :5
y=6.4

3. Pronađite x. Pronađeno y zamjenjujemo u bilo koju od jednadžbi, recimo u prvu jednačinu.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4.6

Tačka presjeka će biti x=4,6; y=6.4
Odgovor: (4,6; 6,4)

Želite li se besplatno pripremati za ispite? Tutor online besplatno. Bez šale.