Какая географическая проекция показана на рисунке. Картографическая проекция

Карта — плоское, искаженное изображение земной поверхности, на котором искажения подчинены определенному математическому закону.
Положение любой точки на плоскости может быть определено пересечением двух координатных линий, которые однозначно соответствовали бы координатным линиям на Земле (?, ?). Отсюда следует, что для получения плоского изображения земной поверхности нужно сначала нанести на плоскость систему координатных линий, которая соответствовала бы таким же линиям на сфере. Имея нанесенную на плоскость систему меридианов и параллелей, можно теперь нанести на эту сетку любые точки Земли.
Картографическая сетка — условное изображение географической сетки земных меридианов и параллелей на карте в виде прямых или кривых линий.
Картографическая проекция — способ построения картографической сетки на плоскости и изображение на ней сферической поверхности Земли, подчиненный определенному математическому закону.
Картографические проекции по характеру искажений делятся на:
1. Равноугольные (конформные) = проекции, не искажающие углов. Сохраняется подобие фигур. Масштаб изменяется с изменением? и?. Отношение площадей не сохраняется (о. Гренландия? Африке, SАфр. ? 13,8 Sо.Гренландия).
2. Равновеликие (эквивалентные) — проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям в натуре. Равенства углов и подобия фигур не сохраняются. Масштаб длин в каждой точке не сохраняется по разным направлениям.
3. Произвольные — проекции, заданные несколькими условиями, но не обладающие ни свойствами равноугольности, ни свойствами равновеликости. Ортодромическая проекция — дуга большого круга изображается прямой линией.

Картографические проекции по способу построения картографической сетки делятся на:
1. Цилиндрические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность цилиндра, касающегося условного глобуса (или секущего его), с последующей разверткой этого цилиндра на плоскость.
Прямая цилиндрическая проекция — ось цилиндра совпадает с осью Земли;
Поперечная цилиндрическая проекция — ось цилиндра перпендикулярна оси Земли;
Косая цилиндрическая проекция — ось цилиндра расположена к оси Земли под углом отличным от 0° и 90°.
2. Конические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность конуса, касающегося условного глобуса (или секущего его), с последующей разверткой этого конуса на плоскость. В зависимости от положения конуса относительно оси Земли различают:
Прямую коническую проекцию — ось конуса совпадает с осью Земли;
Поперечную коническую проекцию — ось конуса перпендикулярна оси Земли;
Косую коническую проекцию — ось конуса расположена к оси Земли под углом отличным от 0° и 90°.
3. Азимутальные — проекции, в которых меридианы — радиальные прямые, исходящие из одной точки (центральной), под углами равными соответствующим углам в натуре, а параллели?-концентрические окружности, проведенные из точки схождения меридианов (ортографические, внешние, стереографические, центральные, полярные, экваториальные, горизонтные).
Меркаторская проекция
Предложенная Меркатором проекция относится к разряду нормальных цилиндрических равноугольных проекций.
Карты, построенные в этой проекции, называются меркаторскими, а проекция — проекция Меркатора или меркаторская проекция.
В меркаторской проекции все меридианы и параллели прямые и взаимноперпендикулярные линии, а линейная величина каждого градуса широты постепенно увеличивается с возрастанием широты, соответственно растягиванию параллелей, которые все в этой проекции по длине равны экватору.
Проекция Меркатора по характеру искажений относится к классу равноугольных.
Для получения морской навигационной карты в проекции Меркатора условный глобус помещают внутрь касательного цилиндра таким образом, чтобы их оси совпали.
Затем проецируют из центра глобуса меридианы на внутренние стенки цилиндра. При этом все меридианы изобразятся прямыми, параллельными между собой и перпендикулярными экватору линиями. Расстояния между ними равны расстояниям между теми же меридианами по экватору глобуса. Все параллели растянутся до величины экватора. При этом параллели, ближайшие к экватору, растянутся на меньшую величину и по мере удаления от экватора и приближения к полюсу величина их растяжения увеличивается.
Закон растяжения параллелей (рис. 1).

а) б) в)
Рис. 1. Закон растяжения параллелей
R и r – радиус Земли и произвольной параллели (СС?).
? – широта произвольной параллели (СС?).
Из прямоугольного треугольника ОС?К получим:
R = r sec?
Обе части равенства умножим на 2?, получим:
2? R = 2? r sec?
где 2? R – длина экватора;
2? r – длина параллели в широте?.
Следовательно, длина экватора равна длине соответствующей параллели, умноженной на секанс широты этой параллели. Все параллели, удлиняясь до длины экватора, растягиваются пропорционально sec?.
Разрезав цилиндр по одной из образующих, и развернув его на плоскость, получим сетку взаимно перпендикулярных меридианов и параллелей (рис. 1б).
Эта сетка не удовлетворяет требованию равноугольности, т.к. изменились расстояния между меридианами по параллели, ибо каждая параллель растянулась и стала равной длине экватора. В результате фигуры с поверхности Земли перенесутся на сетку в искаженном виде. Углы в природе не будут соответствовать углам на сетке.
Очевидно, для того, чтобы не было искажений, т.е. чтобы сохранить на карте подобие фигур, а следовательно, и равенство углов, необходимо все меридианы в каждой точке растянуть на столько, на сколько растянулись в данной точке параллели, т.е. пропорционально sec?. При этом эллипс на проекции вытянется в направлении малой полуоси и станет кругом, подобным острову круглой формы на поверхности Земли. Радиус круга станет равным большой полуоси эллипса, т.е. будет в sec? раз больше круга на поверхности Земли (рис. 1в).
Полученная таким образом картографическая сетка и проекция будут полностью удовлетворять требованиям, предъявленным к морским навигационным картам, т.е. проекцией Меркатора.
Поперечная цилиндрическая проекция
Поперечная цилиндрическая проекция применяется для составления морских навигационных карт и карт-сеток на приполюсные районы для?Г > 75?80°N(S).
Как и нормальная цилиндрическая проекция Меркатора, эта проекция является равноугольной (не искажает углы).
При построении и использовании карт в данной проекции применяется система квазигеографических координат («квази» (лат.) – как бы»), которая получается следующим образом (рис. 2):

Рис. 2. Поперечная цилиндрическая проекция
? Северный полюс условно помещается в точку с координатами: ?Г = 0°, ?Г = 180° (р-н Тихого океана), а южный полюс – в точку с координатами: ?Г = 0°, ?Г = 0° (р-н Гвинейского залива).
Полученные точки называются квазиполюсами: PNq – северным, PSq – южным.
? Проведя квазимеридианы и квазипараллели относительно квазиполюсов, получим новую систему координат, повернутую на 90° относительно географической.
Координатными осями этой системы будут:
1. начальный квазимеридиан – большой круг, проходящий через северный географический полюс (PN) и квазиполюсы (PNq и PSq), он совпадает с географическим (?Г = 0° и?Г = 180°) Гринвичским (начальным) меридианом;
2. квазиэкватор – большой круг, проходящий через географический полюс (PN) и точки на экваторе с долготами: ?Г = 90°Е (р-н Индийского океана) и?Г = 90°W (р-н Галапагоских островов).
Координатными линиями этой системы являются:
3. квазимеридианы – большие круги, проходящие через квазиполюсы;
4. квазипараллели – малые круги, плоскости которых параллельны плоскости квазиэкватора.
Положение любой точки на поверхности Земли на картах в поперечной цилиндрической проекции определяется квазиширотой (?q) и квазидолготой (?q).
? Квазиширота (?q) — угол при центре Земли (шара) между плоскостью квазиэкватора и радиусом, проведенным в данную точку земной поверхности. Квазиширота определяет положение квазипараллелей; отсчитывается от квазиэкватора к квазиполюсам: к PNq — + ?q и к PSq — –?q от 0° до 90°.
? Квазидолгота (?q) — двугранный угол при квазиполюсе между плоскостями начального квазимеридиана и квазимеридиана данной точки. Квазидолгота определяет положение квазимеридианов; отсчитывается от географического полюса PN по квазиэкватору к востоку (+?q) и к западу (–?q) от 0° до 180°.
Началом отсчета квазигеографических координат является географический северный полюс (т. PN).
Основные уравнения поперечной цилиндрической равноугольной проекции имеют вид:

y = R ?q; m = n = sec ?q
где

– радиус Земли (м);
m и n – частные масштабы по квазимеридиану и квазипараллели.

где а = 3437,74?.
Для эллипсоида Красовского: а = 6378245 м.
Переход от географических координат к квазикоординатам выполняется по формулам:
sin ?q = ?cos ? cos ?; tg ?q = ctg ? sin ?
sin ? = ?cos ?q cos ?q; tg ? = ?ctg ?q sin ?q
Прямой линией на такой карте изображается квазилоксодромия, пересекающая квазимеридианы под одним и тем же квазикурсом Кq (рис. 3).

Рис. 3. Квазилоксодромия
Локсодромия, вследствие кривизны географических меридианов, сходящихся на полюсе, будет изображаться кривой линией, обращенной выпуклостью к экватору.
Ортодромия же представит собой кривую малой кривизны, обращенную выпуклостью в сторону ближайшего квазиполюса.
Таким образом, при построении квазигеографической сетки карты используются формулы, аналогичные формулам для нормальной проекции Меркатора с заменой в них географических координат квазигеографическими.
Главный масштаб карт и карт-сеток относят к квазиэкватору.
Географические меридианы изображаются кривыми, близкими к прямым линиям.
Географические параллели изображаются кривыми линиями, близкими к окружностям.
Квазикурс (Кq) – угол между квазисеверной частью квазимеридиана и направлением носовой части продольной оси судна (отсчитывается по часовой стрелке от 0° до 360°).
Для перехода от географических направлений к направлениям в квазигеографической системе координат используется угол перехода Q – угол между географическим меридианом и квазимеридианом, значение которого можно получить из треугольника АPNPNq (рис. 2).

Кq = ИК? Q
В широтах >80°, когда соs ?q ? 1, получим:
sin Q = sin ?
т.е. в высоких широтах угол перехода практически равен долготе точки.
Прокладка курса на такой карте относительно географических или квазигеографических меридианов осуществляется по формуле:
ИК = Кq + ?; Кq = ИК? ?
Для прокладки расстояний необходимо пользоваться специальными вертикальными шкалами с линейным масштабом в морских милях, находящимися за боковыми рамками карт.
Для приполюсных районов Северного Ледовитого океана (СЛО) издаются карты М 1:500.000, на которых красным цветом нанесены квазипараллели, а черным цветом – географические меридианы и параллели с двойной оцифровкой красным и зеленым цветом. Это позволяет использовать карту-сетку в двух районах, симметричных относительно географических меридианов 0°…..180° и 90°Е…..90°W.
По аналогии с нормальной проекцией Меркатора на картах и картах-сетках в поперечной проекции Меркатора прямой линией изображается квазилоксодромия – кривая на поверхности Земли, пересекающая квазимеридианы под постоянным углом Кq (при?q ? 15° ее можно принимать за кратчайшую линию).
Уравнение квазилоксодромии:
?q2 ? ?q1 = tg Кq (Dq2 ? Dq1)
где?q2 ? ?q1 – разность квазидолгот точек;
Dq2 ? Dq1 – разность квазимеридиональных частей (табл. 26 «МТ-75» или табл. 2.28а «МТ-2000»).
Если известен главный масштаб карты или карты-сетки
МГ = 1: CГ
по квазиэкватору, то частный масштаб
МТ = 1: CТ
в точке с квазиширотой?q вычисляется по формуле:
МТ = МГ sec ?qТ
или
CТ = CГ cos ?qТ
(масштаб карт увеличивается по мере удаления от квазиэкватора).
Перспективные картографические проекции
Перспективные проекции применяются для составления некоторых справочных и вспомогательных карт (обзорные карты обширных районов, ортодромические карты, ледовые карты и пр.).
Эти проекции представляют собой частный случай азимутальных проекций.
(Азимутальные проекции – проекции, в которых меридианами являются радиальные прямые, исходящие из одной точки (центральной точки) под углами, равными соответствующим углам в натуре, а параллели – концентрические окружности, проведенные из точки схождения меридианов).

Рис. 4. Перспективные проекции
В перспективных проекциях (рис. 4) поверхность Земли (сферы) переносится на картинную плоскость методом проецирования с помощью пучка прямых, исходящих из одной точки – точки зрения (ТЗ).
Картинная плоскость может отстоять от поверхности сферы на некотором расстоянии (КП1), касаться сферы (КП2), или пересекать ее.
Точка зрения (т. О) лежит в одной из точек на перпендикуляре к картинной плоскости, проходящем через центр сферы.
Точку пересечения картинной плоскости с перпендикуляром называют центральной точкой карты (ЦТ).
В зависимости от положения точки зрения (ТЗ) одна и та же точка (т. К0) будет отстоять на различных расстояниях? от ЦТ карты, что и будет определять характер искажений, присущих данной проекции.
Наиболее распространенными перспективными проекциями являются – гномоническая (центральная) и стереографическая.
В гномонической проекции точка зрения (ТЗ) совпадает с центром сферы (ТЗ — в т. О1).
Сетка меридианов и параллелей карты строится по формулам, связывающим прямоугольные координаты точек с их географическими координатами.
В зависимости от положения центральной точки (ЦТ) карты, гномоническая проекция может быть (рис. 5):
a. нормальной (полярной) – если центральная точка (ЦТ) совмещена с географическими полюсом (рис. 5а);
b. экваториальной (поперечной) – если центральная точка (ЦТ) расположена на экваторе (рис. 5б);
c. косой – если центральная точка (ЦТ) расположена в некоторой промежуточной широте (рис. 5в).

а) б) в)
Рис. 5. Гномонические проекции
Общие свойства карт в гномонической проекции:
1) большие искажения как формы, так и размеров фигур, возрастающие по мере удаления от центральной точки (ЦТ) карты, поэтому измерение расстояний и углов на такой карте затруднено.
Измеряемые по карте углы и расстояния, называемые гномоническими, могут довольно значительно отличаться от истинных значений, вследствие чего для точных измерений карты в данной проекции не применяются;
2) отрезки дуги большого круга (ортодромии) изображаются прямыми линиями, что позволяет использовать гномоническую проекцию при построении ортодромических карт.
Карты в гномонической проекции строятся, как правило, в мелких масштабах для участков поверхности Земли меньше полушария, а сжатие Земли не учитывается.
В стереографической проекции картинная плоскость касается поверхности сферы, а точка зрения (ТЗ) расположена в т. О2 (рис. 4), являющейся антиподом точки касания. Эта проекция равноугольная, однако, для решения навигационных задач она неудобна, так как основные линии – локсодромия и ортодромия – изображаются в этой проекции сложными кривыми.
Стереографическая проекция является одной из основных для построения справочных и обзорных карт обширных территорий.
Равноугольная картографическая проекция Гаусса
Равноугольная проекция Гаусса применяется для составления топографических и речных карт, а также и планшетов.
Основной картографической сеткой этой проекции является сетка прямоугольных координат.
В прямоугольной системе координат проекции Гаусса вся поверхность земного эллипсоида разбита на 60 6-ти градусных зон, ограниченных меридианами, каждая из которых имеет свое начало координат – точку пересечения осевого меридиана зоны с экватором.

Рис. 6. Равноугольная проекция Гаусса
Счет зон введется от Гринвичского меридиана к Е от № 1 до № 60. Любую заданную точку в пределах зоны (т. А – рис. 6) получают в пересечении 2-х координатных линий:
1. дуги эллипса nAn?, параллельной осевому меридиану зоны и
2. кратчайшей линии АА?, проведенной из данной точки А перпендикулярно осевому меридиану.
За начало координат в каждой зоне принимается точка пересечения осевого меридиана с экватором.
Удаление точки А? (основание перпендикуляра) от экватора определяется абсциссой Х, а удаление малого круга nn? от осевого меридиана – ординатой У.
Абсциссы Х во всех зонах отсчитываются в обе стороны от экватора («+» — к N).
Ординате У приписывается знак «плюс» (+), когда заданная точка удалена к Е (востоку) от осевого меридиана зоны, и знак «минус» (–), когда заданная точка удалена от осевого меридиана к W (западу).
Для определения отечественного номера зоны, в которой расположена заданная точка с долготой?, применяют формулу:
n = (? + 3°)/6
(ближайшее целое число от 1 до 60).
Деление долготы? производится до ближайшего целого числа (для? = 55°Е? n = 10).
Для вычисления долготы L0 осевого меридиана зоны применяют формулу:
L0 = 6 n ? 3°
(для n = 10 ? L0 = 57°Е).
N – международная нумерация зон (от меридиана 180° к востоку).
Для?E: N = n + 30 и n = N – 30 (для восточного полушария).
Для?W: N = n – 30 и n = N + 30 (для западного полушария).
В табл. 2.31а «МТ-2000» указаны значения отечественных (n) и международных (N) номеров долготных зон, их границы и долгота (?0) осевого меридиана? см. табл. 10.1.
Прямоугольная система координат применяется при производстве топографических работ, составлении топографических карт, расчете направлений и расстояний между точками при малых расстояниях.
Граничными линиями карты в проекции Гаусса служат меридианы и параллели.
Положение заданной точки на карте определяют указанием плоских прямоугольных координат Х и У.
Этим координатам соответствуют километровые линии:
Х = const – параллельна экватору, и
У = const – параллельная осевому меридиану зоны.
Плоские координаты Х и У являются функциями географических координат точки и в общем виде могут быть представлены выражениями:
X = f1 (?,l); Y = f2 (?,l)
где l – разность долгот заданной точки и осевого меридиана, т.е.
l = ? ? L0
Вид функций f1 и f2 выводится так, чтобы обеспечивалось свойство равноугольности проекции при постоянном масштабе вдоль осевого меридиана зоны.
Километровые линии – линии одинаковых значений абсцисс X = const или ординат Y = const, выраженные целым числом км.
Километровые линии (X = const и У = const) ? два семейства взаимно перпендикулярных прямых и оцифровываются соответствующими значениями координат в км. На картах в проекции Меркатора линии X изображаются кривыми, обращенными выпуклостью к полюсу, а линии Y – кривыми, выпуклостью к осевому меридиану и расходящимся по мере удаления от экватора.
Для исключения отрицательных значений ординат оцифровка осевого меридиана увеличена на 500 км.
(При Х = 6656 и У = 23612 ? заданная точка удалена от экватора по осевому меридиану на 6656 км, находится в 23-й зоне и имеет условную ординату 612, а фактически? 112 км к Е).
Прямоугольные координаты Х и У выражают обычно в метрах.
Рамки карт в проекции Гаусса разбиты на минуты по широте и долготе. Значения широт и долгот параллелей и меридианов, ограничивающих карту, надписываются в углах рамки.
Меридианы и параллели на карту не наносятся. При необходимости их можно провести через соответствующие деления минут широты и долготы на рамках карты.
Угол между километровой линией У = const и истинным меридианом называется сближением или схождением меридианов. Этот угол (?) отсчитывается от северной части истинного меридиана по часовой стрелке до северной части километровой линии У = const
Схождению меридианов приписывают знак «плюс» (+), если заданная точка расположена к Е (востоку) от осевого меридиана, и знак «минус» (–), если она расположена к W (западу) от осевого меридиана зоны.
При известных координатах? и? заданной точки угол? вычисляется по формуле:
? = (? ? L0) sin ?
где L0 – долгота осевого меридиана зоны.

Ввиду ограниченной ширины зоны кратчайшие линии на картах в проекции Гаусса, изображаются практически прямыми линиями, а масштаб по всей карте постоянен.
Эти свойства, а также наличие сетки прямоугольных координат являются главными причинами широкого применения данной проекции при всех топографических, геодезических и гидрографических работах.
Для решения задач, связанных с использованием как географических, так и прямоугольных координат точек, а также с прокладкой отрезков локсодромий, применяются карты, составленные в нормальной проекции Меркатора с дополнительно нанесенной сеткой прямоугольных координат Гаусса. Основные свойства таких карт полностью соответствуют таковым для нормальной проекции Меркатора.

Для выбора наивыгоднейшего пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное обобщенное изображение земной поверхности на плоскости, выполненное по определенному масштабу и способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений. Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов - разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности - картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей или части поверхности шара или эллипсоида вращения с малым сжатием называются картографической проекцией , а принятая при данной картографической проекции система изображения сети меридианов и параллелей - картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т. е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Если остров круглой формы в природе, то и на кар- те в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т. е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач. Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.

Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S (рис, 33). В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели - дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными. Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли (рис.34), и последующей развертки по образующей на плоскость.


В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа",bb",сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис. 34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса). Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки. На этих сетках меридианы и параллели изображаются кривыми линиями.




Рис. 34


Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q (рис. 35) - касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из. центральной точки проекции P N под угла- ми, равными соответствующим углам в натуре, а параллели - концентрическими окружностями с центром в полюсе. Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Азимутальная проекция зависит от того, какими радиусами проводятся параллели. Подчиняя радиусы той или иной зависимости от широты, получают различные азимутальные проекции, удовлетворяющие условиям либо равноугольности, либо равновеликости.


Рис. 35


Перспективные проекции. Если картографическую сетку получают проектированием меридианов и параллелей на плоскость по законам линейной перспективы из постоянной точки зрения Т.З. (см. рис. 35), то такие проекции называют перспективными. Плоскость можно располагать на любом расстоянии от Земли или так, чтобы она касалась ее. Точка зрения должна находиться на так называемом основном диаметре земного шара или на его продолжении, причем картинная плоскость должна быть перпендикулярна основному диаметру.

Когда основной диаметр проходит через полюс Земли, проекция называется прямой или полярной (см. рис. 35); при совпадении основного диаметра с плоскостью экватора проекция называется поперечной или экваториальной, а при других положениях основного диаметра проекции называются косыми или горизонтальными.

Кроме того, перспективные проекции зависят от расположения точки зрения от центра Земли на основном диаметре. Когда точка зрения совпадает с центром Земли, проекции называются центральными или гномоническими; когда точка зрения находится на поверхности Землистереографическими; при удалении точки зрения на какое-либо известное расстояние от Земли проекции называются внешними, и при удалении точки зрения в бесконечность -ортографическими.

На полярных перспективных проекциях меридианы и параллели изображаются аналогично полярной азимутальной проекции, но расстояния, между параллелями получаются разными и обусловлены положением точки зрения на линии основного диаметра.

На поперечных и косых перспективных проекциях меридианы и параллели изображаются в виде эллипсов, гипербол, окружностей, парабол или прямых линий.

Из особенностей, свойственных перспективным проекциям, следует отметить, что на стереографической проекции любой круг, проведенный на земной поверхности, изображается в виде окружности; на центральной проекции всякий большой круг, проведенный на земной поверхности, изображается в виде прямой линии, в связи с чем в некоторых частных случаях эту проекцию представляется целесообразным применять в навигации.

Условные проекции. К этой категории относятся все проекции, которые по способу построения нельзя отнести ни к одному из перечисленных выше видов проекций. Они обычно удовлетворяют каким-нибудь заранее поставленным условиям, в зависимости от тех целей, для которых требуется карта. Число условных проекций не ограничено.

Небольшие участки земной поверхности до 85 км можно изобразить на плоскости с сохранением на них подобия нанесенных фигур и площадей. Такие плоские изображения небольших участков земной поверхности, на которых искажениями практически можно пренебрегать, называются планами.

Планы обычно составляют без всяких проекций путем непосредственной съемки и на них наносят все подробности снимаемого участка.

Из рассмотренных выше проекций в судовождении в основном применяются: равноугольная, цилиндрическая, азимутальная перспективная, гномоническая и азимутальная перспективная стереографическая.

Масштабы

Масштабом карты называется отношение бесконечно малого элемента линии в данной точке и по данному направлению на карте к соответствующему бесконечно малому элементу линии на местности.

Этот масштаб называется частным масштабом, и каждая точка карты имеет свой, присущий только ей, частный масштаб. На картах, кроме частного, различают еще главный масштаб, являющийся исходной величиной для расчетов размеров карты.

Главным называется масштаб, величина которого сохраняется лишь по определенным линиям и направлениям, в зависимости от характера построения карты. На всех остальных частях одной и той же карты величина масштаба больше или меньше главного, т. е. этим частям карты будут соответствовать свои частные масштабы.

Отношение частного масштаба карты в данной точке по данному направлению к главному называется увеличением масштаба , а разность между увеличением масштаба и единицей - относительным искажением длины. На равноугольной цилиндрической проекции масштаб изменяется при переходе с одной параллели на другую. Параллель, по которой соблюден главный масштаб, называется главной параллелью. По мере удаления от главной параллели в сторону полюса величины частных масштабов на одной и той же карте увеличиваются и, наоборот, по мере удаления от главной параллели в сторону экватора величины частных масштабов уменьшаются.

Если масштаб выражается в виде простой дроби (или отношения), делимое которой - единица, а делитель - число, указывающее, скольким единицам длины на горизонтальной проекции данного участка земной поверхности соответствует одна единица длины на карте, то такой масштаб называется численным или числовым. Например, числовой масштаб 1/100000 (1:100000) означает, что 1 см на карте соответствует 100 000 см на местности.

Для определения длины измеряемых линий пользуются линейным масштабом, показывающим, сколько единиц длины высшего наименования на местности содержится в одной единице длины низшего наименования на карте (плане).

Например, масштаб карты «5 миль в I см» или 10 км в 1 см» и т. п. Это значит, что расстояние в 5 миль (или 10 км) на местности соответствует 1 см на карте (плане).

Линейный масштаб на плане или карте помещают под рамкой в виде прямой, разделенной на несколько делений; начальную точку линейного масштаба обозначают цифрой 0, а затем против каждого или некоторых последующих его делений ставят цифры, показывающие соответствующие этим делениям расстояния на местности.

Переход от числового масштаба к линейному осуществляется простым пересчетом мер длины.

Например, чтобы перейти от числового масштаба 1/100000 к линейному, нужно 100 000 см перевести в километры или мили. 100 000 см = 1 км, или, приближенно, 0,54 мили, следовательно, данная карта составлена в масштабе 1 км в 1 см, или 0,54 мили в 1 см.

Если известен линейный масштаб, например 2 мили в 1 см, то для перехода к числовому необходимо 2 мили перевести в сантиметры и сделать запись в виде дроби с числителем единица: 2 1852 100 - = 370 400 см, следовательно, числовой масштаб данной карты 1/370400

Картографической проекцией называется математически определенный способ отображения поверхности земного эллипсоида на плоскости. Он устанавливает функциональную зависимость между географическими координатами точек поверхности земного эллипсоида и прямоугольными координатами этих точек на плоскости, т.е.

X = ƒ 1 (B , L ) и Y = ƒ 2 (В, L ).

Картографические проекции классифицируются по характеру искажений, по виду вспомогательной поверхности, по виду нормальной сетки (меридианов и параллелей), по ориентировке вспомогательной поверхности относительно полярной оси и др.

По характеру искажений выделяют следующие проекции:

1. равноугольные , которые передают величину углов без искажения и, следовательно, не искажают формы бесконечно малых фигур, а масштаб длин в любой точке остается одинаковым по всем направ­лениям. В таких проекциях эллипсы искажений изображаются окружностями разного радиуса (рис. 2 а ).

2. равновеликие , в которых отсутствуют искажения площадей, т.е. сохраняются соотношения площадей участков на карте и эллипсоиде, однако сильно искажаются формы бесконечно малых фигур и масштабы длин по разным направлениям. Бесконечно малые кружки в разных точках таких проекций изображаются равноплощадными эллипсами, имеющими разную вытянутость (рис. 2 б ).

3. произвольные , в которых имеются в разных соотношениях искажения и углов и площадей. Среди них выделяются равнопромежуточные, в которых масштаб длин по одному из главных направлений (меридианам или параллелям) остается постоянным, т.е. сохраняется длинна одной из осей эллипса (рис. 2 в ).

По виду вспомогательной поверхности для проектирования выделяют следующие проекции:

1. Азимутальные , в которых поверхность земного эллипсоида переносится на касательную или секущую его плоскость.

2. Цилиндрические , в которых вспомогательной поверхностью служит боковая поверхность цилиндра, касательная к эллипсоиду или секущая его.

3. Конические , в которых поверхность эллипсоида переносится на боковую поверхность конуса, касательную к эллипсоиду или секущую его.

По ориентировке вспомогательной поверхности относительно полярной оси проекции подразделяются на:

а) нормальные , в которых ось вспомогательной фигуры совпадает с осью земного эллипсоида; в азимутальных проекциях плоскость перпендикулярна к нормали, совпадающей с полярной осью;

б) поперечные , в которых ось вспомогательной поверхности лежит в плоскости земного экватора; в азимутальных проекциях нормаль вспомогательной плоскости лежит в экваториальной плоскости;

в) косые , в которых ось вспомогательной поверхности фигуры совпадает с нормалью, находящейся между земной осью и плоскостью экватора; в азимутальных проекциях плоскость к этой нормали перпендикулярна.

На рис.3 показаны различные положения плоскости, касательной к поверхности земного эллипсоида.

Классификация проекций по виду нормальной сетки (меридианов и параллелей) является одной из основных. По этому признаку выделяется восемь классов проекций.

а б в

Рис. 3. Виды проекций по ориентировке

вспомогательной поверхности относительно полярной оси.

а -нормальная; б -поперечная; в -косая.

1. Азимутальные. В нормальных азимутальных проекциях меридианы изображаются прямыми, сходящимися в одну точку (полюс) под углами, равными разности их долгот, а параллели - концентрическими окружностями, проведенными с общего центра (полюса). В косых и большинства поперечных азимутальных проекциях меридианы, исключая средний, и параллели представляют кривые линии. Экватор в поперечных проекциях - прямая линия.

2. Конические. В нормальных конических проекциях меридианы изображаются прямыми, сходящимися в одной точке под углами, пропорциональными соответствующим разностям долгот, а параллели - дугами концентрических окружностей с центром в точке схода меридианов. В косых и поперечных - параллели и меридианы, исключая средний, - кривые линии.

3. Цилиндрические. В нормальных цилиндрических проекциях меридианы изображаются равноотстоящими параллельными прямыми, а параллели - перпендикулярными к ним прямыми, в общем случае не равноотстоящими. У косых и поперечных проекциях параллели и меридианы, исключая средний, имеют вид кривых линий.

4. Поликонические. При построении этих проекций сеть меридианов и параллелей переносится на несколько конусов, каждый из которых развертывается в плоскость. Параллели, исключая экватор, изображаются дугами эксцентрических окружностей, центры которых лежат на продолжении среднего меридиана, имеющего вид прямой линии. Остальные меридианы - кривые, симметричные к среднему меридиану.

5. Псевдоазимутальные , параллели которых представляют концентрические окружности, а меридианы - кривые, сходящиеся в точке полюса и симметричные относительно одного или двух прямолинейных меридианов.

6. Псевдоконические , в которых параллели представляют собой дуги концентрических окружностей, а меридианы - кривые линии, симметричные относительно среднего прямолинейного меридиана, который может не изображаться.

7. Псевдоцилиндрические , в которых параллели изображаются параллельными прямыми, а меридианы - кривыми, симметричными относительно среднего прямолинейного меридиана, который может не изображаться.

8. Круговые , меридианы которых, исключая средний, и параллели, исключая экватор, изображаются дугами эксцентрических окружностей. Средний меридиан и экватор - прямые.

    Равноугольная поперечно-цилиндрическая проекция Гаусса – Крюгера. Зоны проекции. Порядок отсчета зон и колонн. Километровая сетка. Определение зоны листа топографической карты по оцифровке километровой сетки

Территория нашей страны имеет очень большие размеры. Это приводит при ее переносе на плоскость к значительным искажениям. По этой причине при построении топографических карт в России на плоскость переносят не всю территорию, а отдельные ее зоны, протяженность которых по долготе составляет 6°. Для переноса зон применяется поперечная цилиндрическая проекция Гаусса – Крюгера (в России используется с 1928 г.). Сущность проекции заключается в том, что вся земная поверхность изображается меридиональными зонами. Такая зона получается в результате деления земного шара меридианами через 6°.

На рис. 2.23 изображен касательный к эллипсоиду цилиндр, ось которого перпендикулярна малой оси эллипсоида.

При построении зоны на отдельный касательный цилиндр эллипсоид и цилиндр имеют общую линию касания, которая проходит по среднему меридиану зоны. При переходе на плоскость он не искажается и сохраняет свою длину. Этот меридиан, проходящий посередине зоны, называется осевым меридианом.

Когда зона спроектирована на поверхность цилиндра, он разрезается по образующим и развертывается в плоскость. При развертывании осевой меридиан изображается без искажения прямой РР′ и его принимают за ось X . Экватор ЕЕ′ также изображается прямой линией, перпендикулярной к осевому меридиану. Он принят за ось Y . Началом координат в каждой зоне служит пересечение осевого меридиана и экватора (рис. 2.24).

В результате, каждая зона представляет собой координатную систему, в которой положение любой точки определяется плоскими прямоугольными координатами X и Y .

Поверхность земного эллипсоида делится на 60 шестиградусных по долготе зон. Счет зон ведется от Гринвичского меридиана. Первая шестиградусная зона будет иметь значение 0°– 6°, вторая зона 6°–12° и т. д.

Принятая в России зона шириной 6° совпадает с колонной листов Государственной карты масштаба 1:1 000 000, но номер зоны не совпадает с номером колонны листов этой карты.

Счет зон ведется от Гринвичского меридиана, а счет колонн от меридиана 180°.

Как мы уже говорили, началом координат каждой зоны является точка пересечения экватора со средним (осевым) меридианом зоны, который изображается в проекции прямой линией и является осью абсцисс. Абсциссы считаются положительными к северу от экватора и отрицательными к югу. Осью ординат является экватор. Ординаты считаются положительными к востоку и отрицательными к западу от осевого меридиана (рис. 2.25).

Так как абсциссы отсчитываются от экватора к полюсам, то для территории России, расположенной в северном полушарии, они будут всегда положительными. Ординаты же в каждой зоне могут быть как положительными, так и отрицательными, в зависимости от того, где находится точка относительно осевого меридиана (на западе или востоке).

Чтобы удобно было делать вычисления, необходимо избавиться от отрицательных значений ординат в пределах каждой зоны. Кроме того, расстояние от осевого меридиана зоны до крайнего меридиана в самом широком месте зоны примерно равно 330 км (рис. 2.25). Чтобы делать расчеты, удобнее брать расстояние, равное круглому числу километров. С этой целью ось X условно отнесли к западу на 500 км. Таким образом, за начало координат в зоне принимают точку с координатами x = 0, y = 500 км. Поэтому ординаты точек, лежащих западнее осевого меридиана зоны, будут иметь значения меньше 500 км, а точек, лежащих восточнее осевого меридиана, – более 500 км.

Так как координаты точек повторяются в каждой из 60 зон, впереди ординаты Y указывают номер зоны.

Для нанесения точек по координатам и определения координат точек на топографических картах имеется прямоугольная сетка. Параллельно осям X и Y проводят линии через 1 или 2 км (взятых в масштабе карты), и поэтому их называют километровыми линиями , а сетку прямоугольных координат – километровой сеткой .

Географическими картами человек пользуется с глубокой древности. Первые попытки изобразить были предприняты еще в Древней Греции такими учеными, как Эратосфен и Гиппарх. Естественно, с тех пор картография как наука далеко продвинулась вперед. Современные карты создаются с помощью съемки со спутников и с использованием компьютерных технологий, что, конечно же, способствует увеличению их точности. И все же, на каждой географической карте присутствуют некоторые искажения относительно натуральных форм, углов или расстояний на земной поверхности. Характер этих искажений, а, следовательно, и точность карты, зависит от видов картографических проекций, использованных при создании конкретной карты.

Понятие картографическая проекция

Разберем подробнее, что такое картографическая проекция и какие их виды применяются в современной картографии.

Картографическая проекция - это изображение на плоскости. Более глубокое с научной точки зрения определение звучит так: картографическая проекция - это способ отображения точек поверхности Земли на некоторой плоскости, при котором между координатами соответствующих точек отображаемой и отображенной поверхностей устанавливается некоторая аналитическая зависимость.

Как строится картографическая проекция?

Построение любых видов картографических проекций происходит в два этапа.

  1. Во-первых, геометрически неправильная поверхность Земли отображается на некоторую математически правильную поверхность, которую называют поверхностью относимости. Для наиболее точного приближения в этом качестве чаще всего используют геоид - геометрическое тело, ограниченное водной поверхностью всех морей и океанов, связанных между собой (уровень моря) и имеющих единую водную массу. В каждой точке поверхности геоида сила тяжести приложена нормально. Однако геоид, как и физическую поверхность планеты, также нельзя выразить единым математическим законом. Поэтому в качестве поверхности относимости вместо геоида принимают эллипсоид вращения, придавая ему максимальное подобие геоиду с помощью степени сжатия и ориентации в теле Земли. Называют это тело земным эллипсоидом или референц-эллипсоидом, причем в разных странах для них принимают различные параметры.
  2. Во-вторых, принятая поверхность относимости (референц-эллипсоид) переносится на плоскость с использованием той или иной аналитической зависимости. В итоге получаем плоскую картографическую проекцию

Искажение проекций

А вы не задумывались, почему на разных картах очертания материков немного различаются? На одних картографических проекциях некоторые части света выглядят больше или меньше относительно каких-либо ориентиров, чем на других. Все дело в искажении, с которым проекции Земли переносятся на плоскую поверхность.

Но почему картографические проекции отображают в искаженном виде? Ответ довольно прост. Сферическую поверхность не представляется возможным развернуть на плоскости, избежав складок или разрывов. Поэтому и изображение с нее нельзя отобразить, избежав искажения.

Методы получения проекций

Изучая картографические проекции, их виды и свойства необходимо упомянуть о методах их построения. Итак, картографические проекции получают, используя два основных метода:

  • геометрический;
  • аналитический.

В основе геометрического метода лежат закономерности линейной перспективы. Наша планета условно принимается сферой некоторого радиуса и проецируется на цилиндрическую или коническую поверхность, которая может либо касаться, либо рассекать ее.

Проекции, полученные подобным способом, называются перспективными. В зависимости от положения точки наблюдения относительно поверхности Земли перспективные проекции разделяют на виды:

  • гномонические или центральные (когда точка зрения совмещена с центром земной сферы);
  • стереографические (в этом случае точка наблюдения расположена на поверхности относимости);
  • ортографическая (когда поверхность наблюдается из любой точки, находящейся вне сферы Земли; проекция строится переносом точек сферы с помощью параллельных линий, перпендикулярных к отображающей поверхности).

Аналитический метод построения картографических проекций базируется на математических выражениях, связывающих точки на сфере относимости и плоскости отображения. Такой метод является более универсальным и гибким, позволяя создавать произвольные проекции по заранее заданному характеру искажения.

Виды картографических проекций в географии

Для создания географических карт используют множество видов проекций Земли. Их классифицируют по различным признакам. В России применяется классификация Каврайского, которая использует четыре критерия, определяющих основные виды картографических проекций. В качестве характерных классифицирующих параметров используют:

  • характер искажения;
  • форму отображения координатных линий нормальной сетки;
  • расположение точки полюса в нормальной координатной системе;
  • способ применения.

Итак, какие существуют виды картографических проекций согласно данной классификации?

Классификация проекций

По характеру искажения

Как упоминалось выше, искажение, в сущности, является неотъемлемым свойством любой проекции Земли. Искажена может быть любая характеристика поверхности: длина, площадь или угол. По типу искажений выделяют:

  • Равноугольные или конформные проекции , в которых азимуты и углы переносятся без искажений. Координатная сетка в конформных проекциях является ортогональной. Карты, полученные таким путем, рекомендуется использовать для определения расстояний в любом направлении.
  • Равновеликие или эквивалентные проекции , где сохраняется масштаб площадей, который принимается равным единице, т. е. площади отображаются без искажения. Такие карты применяют для сравнения площадей.
  • Равнопромежуточные или эквидистантные проекции , при построении которых сохраняется масштаб по одному из основных направлений, который принимается единичным.
  • Произвольные проекции , на которых могут присутствовать все разновидности искажений.

По форме отображения координатных линий нормальной сетки

Такая классификация является максимально наглядной и, следовательно, наиболее легкой для восприятия. Отметим, однако, что данный критерий относится только к проекциям, ориентированным нормально к точке наблюдения. Итак, исходя из данного характерного признака, различают следующие виды картографических проекций:

Круговые , где параллели и меридианы представляют окружностями, а экватор и средний меридиан сетки в виде прямых линий. Подобные проекции применяют для изображения поверхности Земли в целом. Примерами круговых проекций могут служить равноугольная проекция Лагранжа, а также произвольная проекция Гринтена.

Азимутальные . В данном случае параллели представляют в виде концентрических окружностей, а меридианы в виде пучка расходящихся радиально из центра параллелей прямых. Подобная разновидность проекций используется в прямом положении для отображения полюсов Земли с прилегающими территориями, а в поперечном в качестве знакомой каждому с уроков географии карты западного и восточного полушарий.

Цилиндрические , где меридианы и параллели представлены прямыми пересекающимися нормально линиями. С минимальным искажением здесь отображаются территории, прилегающие к экватору или же растянутые вдоль некоторой стандартной широты.

Конические , представляющие собой развертку боковой поверхности конуса, где линии параллелей являются дугами окружностей с центром в вершине конуса, а меридианов - направляющими, расходящимися из вершины конуса. Такие проекции наиболее точно изображают территории, лежащие в средних широтах.

Псевдоконические проекции похожи на конические, только меридианы в данном случае изображаются кривыми линиями, симметричными относительно прямолинейного осевого меридиана сетки.

Псевдоцилиндрические проекции напоминают цилиндрические, только, также, как и в псевдоконических, меридианы изображаются кривыми линиями, симметричными осевому прямолинейному меридиану. Используются для изображения Земли целиком (например, эллиптическая проекция Мольвейде, равновеликая синусоидальная Сансона и т. д.).

Поликонические , где параллели изображаются в виде окружностей, центры которых расположены на среднем меридиане сетки или его продолжении, меридианы в виде кривых, расположенных симметрично прямолинейному

По положению точки полюса в нормальной системе координат

  • Полярные или нормальные - полюс системы координат совпадает с географическим полюсом.
  • Поперечные или трансверсионные - полюс нормальной системы совмещается с экватором.
  • Косые или наклонные - полюс нормальной сетки координат может находиться в любой точке между экватором и географическим полюсом.

По способу применения

По способу использования выделяют следующие виды картографических проекций:

  • Сплошные - проецирование всей территории на плоскость производится по единому закону.
  • Многополосные - картографируемая местность условно разбивается на несколько широтных зон, которые проецируют на плоскость отображения по единому закону, но с изменением параметров для каждой зоны. Примером подобной проекции может служить трапециевидная проекция Мюфлинга, которая применялась в СССР для крупномасштабных карт до 1928 г.
  • Многогранные - территорию условно разбивают на некоторое количество зон по долготе, проецирование на плоскость производится по единому закону, но с разными параметрами для каждой из зон (например, проекция Гаусса-Крюгера).
  • Составные , когда некоторая часть территории отображается на плоскость с использованием одной закономерности, а остальная территория с другой.

Достоинством как многополосных, так и многогранных проекций является высокая точность отображения в пределах каждой зоны. Однако весомым недостатком при этом является невозможность получения сплошного изображения.

Разумеется, каждую картографическую проекцию можно классифицировать с использованием каждого из вышеперечисленных критериев. Так, знаменитая проекция Земли Меркатора является конформной (равноугольной) и поперечной (трансверсионной); проекция Гаусса-Крюгера - конформной поперечной цилиндрической и т. д.

Использование результатов топографо-геодезических работ существенно упрощаются, если эти результаты отнесены к простейшей – прямоугольной системе координат на плоскости. В такой системе координат многие геодезические задачи на небольших участках местности и на картах решаются путем применения простых формул аналитической геометрии на плоскости. Закон изображения одной поверхности на другой называют проекцией. Картографические проекции основаны на формировании специфического отображения параллелей широты и меридианов долготы эллипсоида на некоторую выравниваемую или развертываемую поверхность. В геометрии, как известно, наиболее простыми развертываемыми поверхностями являются плоскость, цилиндр и конус. Это и определило три семейства картографических проекций: азимутальные, цилиндрические и конические . Независимо от выбранного типа преобразований, любое отображение криволинейной поверхности на плоскость влечет за собой ошибки и искажения. Для геодезических проекций предпочитают проекции, обеспечивающие медленное нарастание в них искажений элементов геодезических построений при постепенном увеличении площади проектируемой территории. Особенно важным является требование, чтобы в проекции обеспечивалась высокая точность и удобство учета этих искажений, причем по наиболее простым формулам. Ошибки проекционных преобразований возникают исходя из точности по четырем характеристикам:

    равноугольность – истинность формы любого объекта;

    равновеликость – равенство площадей;

    равнопромежуточность – истинность измерения расстояний;

    истинность направлений.

Ни одна из картографических проекций не может обеспечить точность отображений на плоскости по всем перечисленным характеристикам.

По характеру искажений картографические проекции подразделяются на равноугольные, равновеликие и произвольные (в частных случаях равнопромежуточные).

Равноугольными (конформными ) проекциями называют такие, в которых отсутствуют искажения углов и азимутов линейных элементов. Эти проекции сохраняют без искажений углы (например, между севером и востоком всегда угол должен быть прямым) и формы малых объектов, но в них резко деформируются длины и площади. Следует отметить, что сохранение углов для больших территорий труднодостижимо, и этого можно добиться только на небольших участках.

Равновеликими (равноплощадными) проекциями называют проекции, в которых площади соответствующих областей на поверхности эллипсоидов и на плоскости тождественно равны (пропорциональны). В этих проекциях искажены углы и формы объектов.

Произвольные проекции имеют искажения углов, площадей и длин, но эти искажения распределены по карте таким образом, что они минимальны в центральной части и возрастают на периферии. Частным случаем произвольных проекций являются равнопромежуточные (эквидистантные) , в которых искажения длин отсутствуют по одному из направлений: вдоль меридиана или вдоль параллели.

Равнопромежуточными называют проекции, сохраняющие длину по одному из главных направлений. Как правило, это проекции с ортогональной картографической сеткой. В этих случаях главными являются направления вдоль меридманов и параллелей. Соответственно определяются равнопромежуточные проекции вдоль одного из направлений. Второй способ построения таких проекций заключается в сохранении единичного масштабного коэффициента вдоль всех направлений из одной точки, либо из двух. Расстояния, измеренные из таких точек, будут точно соответствовать реальным, но для любых других точек это правило не будет действовать. В случае выбора такого вида проекции очень важен выбор точек. Обычно предпочтение отдают точкам, из которых производится наибольшее количество измерений.

а) конические

б) цилиндрические

в) азимутальные

Рисунок 11. Классы проекций по способу построения

Равноазимутальные проекции чаще всего используются в навигации, т.е. когда наибольший интерес представляет сохранение направлений. Аналогично равновеликой проекции, сохранение истинных направлений возможно лишь для одной или двух определенных точек. Прямые линии, проведенные только из этих точек, будут соответствовать истинным направлениям.

По способу построения (развертывания поверхности на плоскость) выделяют три больших класса проекций: конические (а), цилиндрические (б) и азимутальные (в).

Конические проекции образуются на основе проектирования земной поверхности на боковую поверхность конуса, определенным образом ориентированного относительно эллипсоида. В прямых конических проекциях оси земного шара и конуса совпадают, при этом выбирается секущий или касательный конус. После проектирования боковая поверхность конуса разрезается по одной из образующих и развертывается в плоскость. В зависимости от размеров изображаемой площади в конических проекциях принимаются одна или две параллели, вдоль которых сохраняются длины без искажений. Одна параллель (касательная) принимается при небольшом протяжении по широте: две параллели (секущие) при большом протяжении для уменьшения отклонений масштабов от единицы. Такие параллели называют стандартными. Особенностью конических проекций является то, что их центральные линии совпадают со средними параллелями. Следовательно, конические проекции удобны для изображения территорий, расположенных в средних широтах и значительно вытянутых по долготе. Именно поэтому многие карты бывшего Советского Союза составлены в этих проекциях.

Цилиндрические проекции образуются на основе проектирования земной поверхности на боковую поверхность цилиндра, определенным образом ориентированного относительно земного эллипсоида. В прямых цилиндрических проекциях параллели и меридианы изображены двумя семействами прямых параллельных линий, перпендикулярных друг другу. Таким образом, задается прямоугольная сетка цилиндрических проекций. Цилиндрические проекции можно рассматривать как частный случай конических, когда вершина конуса отнесена в бесконечность (=0). Существуют разные способы образования цилиндрических проекций. Цилиндр может быть касательным к эллипсоиду или секущим его. В случае использования касательного цилиндра точность измерения длин выдержана по экватору. Если используется секущий цилиндр – по двум стандартным параллелям, симметричным относительно экватора. Применяются прямые, косые и поперечные цилиндрические проекции, в зависимости от расположения изображаемой области. Цилиндрические проекции применяют при составлении карт мелких и крупных масштабов.

Азимутальные проекции образуются путем проектирования земной поверхности на некоторую плоскость, определенным образом ориентированную относительно эллипсоида. В них параллели изображаются концентрическими окружностями, а меридианы – пучком прямых, исходящих из центра окружности. Углы между меридианами проекций равны соответствующим разностям долгот. Промежутки между параллелями определяются принятым характером изображения (равноугольным или другим). Нормальная сетка проекции ортогональна. Азимутальные проекции можно рассматривать как частный случай конических проекций, в которых =1.

Применяются прямые, косые и поперечные азимутальные проекции, что определяется широтой центральной точки проекции, выбор которой, в свою очередь, зависит от расположения территории. В зависимости от искажений азимутальные проекции подразделяются как равноугольные, равновеликие и с промежуточными свойствами.

Существует большое разнообразие проекций: псевдоцилиндрические, поликонические, псевдоазимутальные и другие. От правильного выбора картографической проекции зависит возможность условий оптимального решения поставленных задач. Выбор проекций обусловлен многими факторами, которые условно можно объединить в три группы.

Первая группа факторов характеризует объект картографирования с точки зрения географического положения исследуемой территории, ее размеров, конфигурации, значимости отдельных ее частей.

Вторая группа включает факторы, характеризуемые создаваемую карту. В эту группу входят содержание и назначение карты в целом, способы и условия ее использования при решении задач ГИС, требования к точности их решения.

К третьей группе относятся факторы, которые характеризуют получаемую картографическую проекцию. Это условие обеспечения минимума искажений, допустимые максимальные величины искажений, характер их распределения, кривизна изображения меридианов и параллелей.

Выбор картографических проекций предлагается осуществлять в два этапа.

На первом этапе устанавливается совокупность проекций с учетом факторов первой и второй групп. При этом необходимо чтобы центральные линии или точки проекций, вблизи которых масштабы мало изменяются, находились в центре исследуемой территории, а центральные линии совпадали, по возможности, с направлением наибольшего распространения этих территорий. На втором этапе определяют искомую проекцию.

Рассмотрим выбор различных проекций в зависимости от расположения исследуемой территории. Азимутальные проекции выбирают, как правило, для изображения территорий полярных областей. Цилиндрические проекции предпочтительны для территорий, расположенных вблизи и симметрично относительно экватора и вытянутых по долготе. Конические проекции следует использовать для таких же территорий, но не симметричных относительно экватора или расположенных в средних широтах.

Для всех проекций выбранной совокупности по формулам математической картографии вычисляют частные масштабы и искажения. Предпочтение следует отдать, естественно, той проекции, которая имеет наименьшие искажения, более простой вид картографической сетки, а при равных условиях – более простой математический аппарат проекции. Рассматривая возможность использования равновеликих проекций, следует учитывать размер интересующей площади, а также величину и распределение угловых искажений, Небольшие участки отображаются с гораздо меньшими угловыми искажениями при использовании равновеликих проекций, что может быть полезно, когда значение имеют площадь и формы объектов. В случае, когда решают задачу определения наикратчайших расстояний лучше использовать проекции, не искажающие направления. Выбор проекции – один из основных процессов создания ГИС.

При решении задач картографирования в недропользовании на территории России наиболее часто используются две проекции, описанные ниже.

Видоизмененная простая поликоническая проекция применяется как многогранная, т.е. каждый лист определяется в своем варианте проекции.

Рисунок12. Номенклатурные трапеции листов масштаба 1:200000 в поликонической проекции

Особенности видоизмененной простой поликонической проекции и распределение искажений в пределах отдельных листов миллионного масштаба следующие:

    все меридианы изображаются прямыми линиями, отсутствуют искажения длин на крайних параллелях и на меридианах, отстоящих от среднего на ±2º,

    крайние параллели каждого листа (северная и южная) являются дугами окружностей, центры этих параллелей находятся на среднем меридиане, длина их не искажается, средние параллели определяются пропорциональным делением по широте вдоль прямолинейных меридианов,

Земная поверхность, принимаемая за поверхность эллипсоида, делится линиями меридианов и параллелей на трапеции. Трапеции изображаются на отдельных листах в одной и той же проекции (для карты масштаба 1: 1 000 000 в видоизмененной простой поликонической). Листы Международной карты мира масштаба 1: 1 000 000 имеют определенные размеры трапеций – по меридианам 4 градуса, по параллелям 6 градусов; на широте от 60 до 76 градуса листы сдваивают, они имеют размеры по параллелям 12; выше 76 градуса объединяют четыре листа и их размер по параллелям составляет 24 градуса.

Применение проекции как многогранной неизбежно связано с введением номенклатуры, т.е. системы обозначения отдельных листов. Для карты миллионного масштаба принято обозначение трапеций по широтным поясам, где в направлении от экватора к полюсам обозначение осуществляется буквами латинского алфавита (A,B,C и т.д.) и по колоннам арабскими цифрами, которые считают от меридиана с долготой 180 (по Гринвичу) против часовой стрелки. Лист, на котором расположен г. Екатеринбург, например, имеет номенклатуру О-41.

Рисунок 13. Номенклатурное деление территории России

Достоинством видоизмененной простой поликонической проекции, примененной как многогранная, является небольшая величина искажений. Анализ в пределах листа карты показал, что искажения длин не превышают 0.10%, площади 0.15%, углов 5´ и являются практически не ощутимыми. Недостатком этой проекции считают появление разрывов при соединении листов по меридианам и параллелям.

Конформная (равноугольная) псевдоцилиндрическая проекция Гаусса-Крюгера. Для применения такой проекции поверхность земного эллипсоида делят на зоны, заключенные между двумя меридианами с разностью долгот 6 или 3 градуса. Меридианы и параллели изображаются кривыми, симметричными относительно осевого меридиана зоны и экватора. Осевые меридианы шестиградусных зон совпадают с центральными меридианами листов карты масштаба 1: 1 000 000. Порядковый номер определяется по формуле

где N – номер колонны листа карты масштаба 1: 1 000 000.

Долготы осевых меридианов шестиградусных зон определяются по формуле

L 0 = 6n – 3, где n - номер зоны.

Прямоугольные координаты x и y в пределах зоны вычисляются относительно экватора и осевого меридиана, которые изображаются прямыми линиями

Рисунок 14. Конформная псевдоцилиндрическая проекция Гаусса-Крюгера

В пределах территории бывшего СССР абсциссы координат Гаусса-Крюгера положительные; ординаты положительные к востоку, отрицательные к западу от осевого меридиана. Чтобы избежать отрицательных значений ординат, точкам осевого меридиана условно придают значение y = 500 000 м с обязательным указанием впереди номера соответствующей зоны. Например, если точка находится в зоне с номером 11 в 25 075м к востоку от осевого меридиана, то значение ее ординаты записывается так: y = 11 525 075 м: если точка расположена к западу от осевого меридиана этой зоны на таком же расстоянии, то y = 11 474 925 м.

В конформной проекции углы треугольников триангуляции не искажаются, т.е. остаются такими же, как на поверхности земного эллипсоида. Масштаб изображения линейных элементов на плоскости постоянен в данной точке и не зависит от азимута этих элементов: линейные искажения на осевом меридиане равны нулю и постепенно возрастают по мере удаления от него: на краю шестиградусной зоны они достигают максимальной величины.

Во странах западного полушария применяют для составления топографических карт универсальную поперечно-цилиндрическую проекцию Меркатора (UTM) в шестиградусных зонах. Эта проекция близка по своим свойствам и распределению искажений к проекции Гаусса-Крюгера, но на осевом меридиане каждой зоны масштаб m=0.9996, а не единица. Проекция UTM получается двойным проектированием - эллипсоида на шар, а затем шара на плоскость в проекции Меркатора.

Рисунок 15. Преобразование координат в геоинформационных системах

Наличие в ГИС программного обеспечения, осуществляющего проекционные преобразования, позволяет легко перевести данные из одной проекции в другую. Такое бывает необходимо, если полученные исходные данные существуют в проекции, не совпадающей с выбранной в вашем проекте или нужно изменить проекцию данных проекта для решения какой-либо специфической задачи. Переход из одной проекции в другую носит название проекционных преобразований. Существует возможность перевода координат цифровых данных, изначально введенных в условных координатах дигитайзера или растровой подложки с помощью преобразований плоскости.

Каждый пространственный объект кроме пространственной привязки обладает некоторой содержательной сущностью, и в следующей главе рассмотрим возможности описания ее.