Правило умножения многочлена на одночлен. Урок "умножение одночлена на многочлен"

В представляемом видеоуроке мы подробно рассмотрим вопрос умножения многочлена на какое-либо выражение, отвечающее определению «моном», или одночлен. Мономом может выступать любое свободное числовое значение, представленное натуральным числом (в любой степени, с любым знаком) либо же некая переменная (с подобными атрибутами). При этом стоит помнить, что многочлен представляет собой набор алгебраических элементов, называемых членами полинома. Иногда некоторые члены могут быть приведены с подобностью и сокращены. Настоятельно рекомендуется проводить процедуру приведения подобных слагаемых после операции умножения. Конечным ответом, в таком случае, будет являться стандартизованная форма полинома.

Как следует из нашего видео, процесс умножения одночлена на многочлен можно рассматривать с двух позиций: линейной алгебры и геометрии. Рассмотрим операцию умножения многочлена с каждой стороны - это способствует универсальности применения правил, особенно в случае комплексных задач.

В алгебраическом понимании, умножение полинома на одночлен отвечает стандартному правилу умножения на сумму: каждый элемент суммы должен быть умножен на заданное значение, а полученное значение алгебраически сложено. Стоит понимать, что любой многочлен - это развернутая алгебраическая сумма. После умножения каждого члена полинома на некое значение мы получим новую алгебраическую сумму, которую принято приводить к стандартному виду, если это возможно, конечно.

Рассмотрим умножение многочлена в данном случае:

3а * (2а 2 + 3с - 3)

Легко понять, что тут выражение (2а 2 + 3с - 3) является многочленом, а 3а - свободным множителем. Для решения этого выражения достаточно переумножить каждый из трех членов полинома на 3а:

При этом стоит помнить, что знак является важным атрибутом переменной справа, и его нельзя потерять. Знак «+», как правило, не записывается, если с него начинается выражение. При умножении чисельно-буквенных выражений все коэффициенты при переменных элементарно перемножаются. Одинаковые переменные повышают степень. Разные переменные остаются неизменными, и записываются в одном элементе: а*с = ас. Знание этих простейших правил сложения способствует корректному, и быстрому решению любых подобных упражнений.

Мы получили три значения, которые являются, по сути, членами итогового многочлена, что и есть ответом на пример. Необходимо лишь алгебраически сложить данные значения:

6а 3 + 9ас +(- 9а) = 6а 3 + 9ас - 9а

Скобки раскрываем, сохраняя знаки, так как это алгебраическое сложение, и между мономами по определению стоит знак «плюс». Итоговый стандартный вид многочлена является корректным ответом на представляемый пример.

Геометрический вид умножения многочлена на одночлен представляет собой процесс нахождения площади прямоугольника. Предположим, у нас есть некий прямоугольник со сторонами а и с. Фигура разбита двумя отрезками на три прямоугольника различной площади, так, что сторона с является для всех общей, или одинаковой. А стороны а1, а2 и а3 в сумме дают начальную а. Как известно из аксиоматического определения площади прямоугольника, для нахождения этого параметра необходимо перемножить стороны: S = а*с. Либо же, S = (а1 + а2 + а3) * с. Проведем умножение многочлена (образованного сторонами меньших прямоугольников) на одночлен - главную сторону фигуры, и получим выражение для S: а1*с + а2*с + а3*с. Но если внимательно присмотреться, то можно заметить, что данный многочлен является суммой площадей трех меньших прямоугольников, которые и составляют начальную фигуру. Ведь для первого прямоугольника S = а1с (по аксиоме) и т.д. Алгебраически верность рассуждений при сложении многочлена подтверждается расчетами линейной алгебры. А геометрически - правилами сложения площадей в единой простейшей фигуре.

При проведении манипуляций с умножением многочлена на одночлен следует помнить, что при этом степени монома и полинома (общая) складываются - а полученное значение является степенью нового многочлена (ответа).

Все вышеперечисленные правила вместе с основами алгебраического сложения используются в примерах простейшего упрощения выражений, где проводится приведение подобных слагаемых и умножение элементов для упрощения всего многочлена.

НР МОБУ «Пойковская средняя общеобразовательная школа №2»

Открытый урок по алгебре в 7 классе

по теме:

«Умножение одночлена на многочлен»

Учителя математики

Лимарь Т. А.

г. п. Пойковский, 2014

Методическая информация

Тип урока

Урок «открытия» нового знания

Цели урока (образовательные, развивающие, воспитательные)

Деятельностная цель урока : формирование у учащихся способностей к самостоятельному построению новых способов действия по теме «Умножение одночлена на многочлен» на основе метода рефлексивной самоорганизации.

Образовательная цель : расширение понятийной базы по теме «Многочлены» за счет включения в нее новых элементов: умножение одночленов на многочлен.

Задачи урока

образовательные:

Выработать алгоритм умножения одночлена на многочлен, рассмотреть примеры его применения.

развивающие:

Развитие внимания, памяти, умения рассуждать и аргументировать свои действия через решение проблемной задачи;

Развитие познавательного интереса к предмету;

Формирование эмоционально-положительного настроя у учащихся путем применения активных форм ведения урока и применением ИКТ;

Развитие рефлексивных умений через проведение анализа результатов урока и самоанализа собственных достижений.

воспитательные:

Развитие коммуникативных умений обучающихся через организацию групповой, парной и фронтальной работы на уроке.

Используемые методы

Словесные методы (беседа, чтение),

Наглядные (демонстрация презентации),

Проблемно-поисковый,

Метод рефлексивной самоорганизации (деятельностный метод),

Формирование личностных УУД.

Дидактическое обеспечение урока:

Компьютерная презентация,

Карточки с заданиями,

Карточки оценки работы на уроке,

Карточки с практическими заданиями по новой теме.


Этапы урок

Деятельность учителя

Деятельность учащихся

    Организационный этап. (1мин)

Цели: актуализация знаний учащихся, определение целей урока, деление класса на группы (разно уровневые), выбор руководителя группы.

Психологический настрой, приветствие учащихся.

Приветствует учеников, называет эпиграф урока. Предлагает занять места по заранее распределенным группам и дает предварительный инструктаж.

Здравствуйте, присаживайтесь. Ребята, еще за тысячи лет до нашего рождения Аристотель говорил, что «…математика … выявляет порядок, симметрию и определенность, а это – важнейшие виды прекрасного». И после каждого урока в мире математики неопределенности становится меньше. Я надеюсь, что и сегодня мы с вами откроем для себя что-то новое.

В ходе урока вы будете заполнять оценочный лист, который лежит у вас на столах, после выполнения каждого задания.

Учащиеся рассаживается по заранее разделенным группам. Знакомится с оценочным листом.

    Устный счет.

Цель: проверить усвоение теоретического материала по теме: «Умножение одночлена на одночлен. Возведение в степень» и умения применять его на практике, развитие мыслительных навыков учащихся, осознание ценности совместной деятельности, борьба за успех группы.

а) математический диктант.

    Привести подобные одночлены.

а) 2х+4у+6х=

б) -4а+в-3а=

в) 3c+2d+5d=

г) -2d +4a-3a =

2. Умножить одночлен на одночлен

а) -2ху 3х

б) (-4ав) (-2в)

г) (-5ав) (2z )

д) 2z (x +y )

Учитель предлагает выполнить математический диктант, записанный на доске. Контролирует правильность выполнение, подводит к изучению нового материала.

Совместно с учащимися формулирует цель и тему урока

- какой из номеров диктанта вызвал у вас наибольшие затруднения?

Давайте попробуем выяснить где именно возникло затруднение и почему?

- Цель нашего урока: научиться выполнять умножение одночлена на многочлен (справедливость вашего решения).

Тема урока: « У множение одночлена на многочлен».

Учащиеся выполняют задания. Совместно с учителем формулирует цель и тему урока. Записывают тему урока тетрадях.

(предполагаемый ответ учащихся д)

Выработать (сформулировать) правило умножения одночлена на многочлен.

    Подведение к новой теме

Цель: подготовить учащихся к изучению нового материала.

Работа в группах.

Группа №1.

Вычислить.

15 80+15 20= 1200+300=1500

15 (80+20)=15 100=1500

Группа №2

Вычислить.

20 40+20 100=800+2000=2800

20 (40+100)=20 140=2800

Группа №3.

Вычислить .

6 (2а+3а)=6 5а=30а

6 2а+6 3а=12а+18а=30

Группа № 4

Вычислить

7 (4х+2х)= 7 6х=42

7 4х+7 2х=28х+14х=42х

Учитель проводит инструктаж. Контролирует выполнение.

Каждой группе необходимо найти значение двух выражений. Сравнить их и записать вывод в виде равенства или неравенства.

Учащиеся решают примеры в группах, делают вывод.

1 член от каждой группы пишет вывод на доске.

На доске написано:

    15 80+15 20=15 (80+20)

    20 40+20 100=20 (40+100)

    6 (2а+3а)=6 2а+6 3

    7 (4х+2х)=7 4х+7 2х

Учащиеся выставляют себе оценку в оценочный лист. Если вывод сформулирован и записан правильно, то ставят 5.

    «Открытие» учащимися нового материала.
    Цель: формирование у учащихся способностей к самостоятельному построению новых способов действия по теме «Умножение одночлена на многочлен» на основе метода рефлексивной самоорганизации.

Выполнение задания «Заполните пропуски»

Слайд 2.

2z ∙(x +y )=2z ∙ +2z ∙


3х(а+в)= а+ в

Через минуту на доске высвечивается правильное решение.

Учитель дает инструктаж.

Проводит опрос. Делает вывод.

Пользуясь равенствами, записанными на доске, заполните пропуски в следующих выражениях

Обратите внимание, что стоит перед скобкой?

Что стоит в скобках?

Что получается в ответе?

И так, давайте сделаем вывод как умножить одночлен на многочлен. Через три минуты представляют свой материал классу (используется белый лист и фломастеры).

Обобщает

Проверим, правильно ли вы сформулировали правило. Для этого откроем учебник на стр.

Ученики работают в группах, каждая группа обсуждает, как заполнить пропуски.

Проверяют правильность заполнения пропусков.

Каждая группа выдвигает свою гипотезу и представляет классу, проходит общее обсуждение и делается вывод.

Читают вслух правило из учебника.

Одночлен

Многочлен

Новый многочлен

    Первичное закрепление.

Цель: отработка навыков умножения одночлена на многочлен, развитие мыслительных навыков учащихся, осознание ценности совместной деятельности, борьба за успех группы, повышение мотивации учебной деятельности.

Работа в группах.

Группа №1, 3

х∙(

m ∙(n +3)=__________________ ; 7a ∙(2b -3c ) = _______________ ;

Группа №2, 4

a∙(c-y) = __________________ ; c∙(c+d)=___________________ ;

m∙(y+5)=__________________ ; 6m∙(2n-3k) = ______________ ;

7

Учитель дает инструктаж.

На парте возьмите карточку №2 Обязательное условие - при решении проговаривать друг другу правило.

Выполните взаимопроверку, группа 1 меняется карточками с группой 3, а группа 2 – с группой 4. Выставьте оценки группам в оценочный лист:

5 правильно выполненных задания – оценка «5»; 4 - «4»; 3- «3»; меньше 3- «2».

Выполняют задание на карточках, проводят взаимопроверку.

Ответственный член группы №1 спрашивает любого члена группы №3. Выставляет оценку в оценочный лист.

ответственный член группы №2 спрашивает любого члена группы №4. Выставляет оценку в оценочный лист

6. Математическая зарядка.
Цель: повысить или удержать умственную работоспособность детей на уроках;

обеспечить кратковременный активный отдых для учеников в течение урока.

Учитель проводит инструктаж, показывает карточки, на которых записаны одночлены, многочлены и выражения которые не являются ни одночленами, ни многочленами.

Учащиеся выполняют упражнения по командам

«Одночлен» - руки подняли вверх; «Многочлен» - руки перед собой «Другое выражение» - руки в стороны;

Закрыли глаза, про себя досчитали до 30, открыли глаза.

    Математическое лото

Цель: закрепить алгоритм умножения одночлена на многочлен и побудить интерес к математике

Группа№1,3

    с(3а-4в)=3ас-12вс;

3) 3c(x-3y)=3cx-9cy;

4) -n(x-m)=-nx+nm;

5) 3z (x-y )= 3zx-3zy .

Карточки с ответами:

    3ас-12вс; 3ас+12вс; 3ас-4в

    zx+2zy; zx-2zy; zx+2y;

    3cx-9cy; 3cx+9cy; 3cx-3cy;

    Nx+nm; nx+nm; nx-nm;

    3zx-3zy; 3zx-y; zx-zy.

Группа №2, 4

Умножьте одночлен на многочлен

    А(3в+с)=-3ав-ас;

    4x (5c -s )=20cx -4xs ;

    a(3c+2b)=3ac +2ba

  1. 5a(b+3d)=5ab+15ad

Карточки с ответами:

    3ав-ас; 3ав+ас; в-ас;

    20cx -4xs ; 20cx +4xs ; 5c -4xs ;

    3ac+2ba; 3ac+6ba; 3ac-2ba;

    cp-5cm; ср-5m; p-5cm.

    5ab+ad; 5ab+5b; 5ab+15ad

Раздает конверты. Рассказывает правила игры. В одном конверте лежат 5 примеров на умножения одночлен на многочлен и 15 карточек с ответами.

Поясняю, как оценивать выполненную работу.

Группа получает оценку «5»,если первой выполнила все задания верно, 4 задания – «4»; 3 задания – «3», меньше трех –«2», та группа, которая завершает игру в лото второй, при этом выполнив все задания, верно получает оценку «4», третья – «3», последняя – «2».

Получают конверты с заданиями.

Выполняют умножение одночлена на одночлен.

Выбирают правильные ответы из всех предложенных карточек.

Самопроверка.

Получают карточку для самопроверки. Выставляют оценку в оценочный лист.

8 . Рефлексия учебной деятельности на уроке (итог урока).

Цель: самооценка учащимися результатов своей учебной деятельности, осознание метода построения границ и применения нового способа действия.

Фронтальная беседа по вопросы на слайде:

Какой алгоритм умножения одночлена на многочлен существует в математике?

Какой результат вашей деятельности?

Учитель проводит анализ оценочных листов (их результаты видны на слайде)

Возвращается к девизу урока, проводит параллель между эпиграфом и выведенном на уроке алгоритмом.

Сдайте оценочные листы, на которых четко видно результат вашей деятельности.

Еще раз вернемся к девизу нашего урока: «…математика … выявляет порядок, симметрию и определенность, а это – важнейшие виды прекрасного». Алгоритм который мы вывели сегодня на уроке, поможет в дальнейшем сделать нам новые открытия: умножение многочлена на многочлен, поможет узнать формулы сокращенного умножения, о которых много говорят в алгебре. В переде нас ждет много интересного и важного.

Спасибо за урок!!!

Учащиеся делают самоанализ своей работы, вспоминают алгоритм, изученный на уроке, отвечают на вопросы.


ПРИЛОЖЕНИЕ.

КАРТОЧКА №1.

Группа №1.

Вычислить.

15 80+15 20= ______________________________

15 (80+20)= _______________________________

КАРТОЧКА №1.

Группа №2

Вычислить.

20 40+20 100 =_________________________________

20 (40+100)= __________________________________

КАРТОЧКА №1.

Группа №3.

Вычислить .

6 (2а+3а)=_____________________________________

6 2а+6 3а=_____________________________________

КАРТОЧКА №1

Группа № 4

Вычислить

7 (4х+2х)= _____________________________________

7 4х+7 2х= _____________________________________

КАРТОЧКА №2.

Группа №3

х∙(z +y ) = __________________ ; a ∙(c +d )=___________________ ;

5x∙(3a-6a)= _______ -________= _______.

КАРТОЧКА №4.

Группа №2

7x ∙(5d -8d )= ______ - ________= _______.

КАРТОЧКА №2.

Группа №1

х∙(z +y ) = __________________ ; a ∙(c +d )=___________________ ;

m∙(n+3)=__________________ ; 7a∙(2b-3c) = _______________ ;

5x∙(3a-6a)= _______ -________= _______.

КАРТОЧКА №2.

Группа №2

a ∙(c -y ) = __________________ ; c ∙(c +d )=___________________ ;

m ∙(y +5)=__________________ ; 6m ∙(2n -3k ) = ______________ ;

7x ∙(5d -8d )= ______ - ________= _______.

Математическое лото ( по два экземпляра)

с(3а-4в)

z(x+2y)

3c(x-3y)

-n(x-m)

3z (x-y )

-а(3в+с)

4x (5c -s )

a(3c+2b)

c(p-5m)

5a(b+3d)


Ответы к лото (по два экземпляра)

3ас-12вс

3ас+12вс

3ас-4в

zx+2zy;

zx-2zy

zx+2y

3сх-9су

3cx-3cy

3сх+3су

Nx+nm

nx+nm

nx-nm

zx-zy

3zx-y

3zx-3zy

3ав-ас

3ав+ас;

в-ас

20cx -4xs

20cx +4xs

5c -4xs

3ac+2ba

3ac+6ba

3ac-2ba

cp-5cm

ср-5m

p-5cm.

5ab+ad

5ab+5b

Частный случай умножения многочлена на многочлен – умножение многочлена на одночлен. В этой статье сформулируем правило совершения этого действия и разберем теорию на практических примерах.

Правило умножения многочлена на одночлен

Разберемся с тем, что является основой умножения многочлена на одночлен. Данное действие опирается на распределительное свойство умножения относительно сложения. Буквенно это свойство записывается так: (a + b) · c = a · c + b · c (a , b и c – некоторые числа). В этой записи выражение (a + b) · c является как раз произведением многочлена (a + b) на одночлен c . Правая же часть равенства a · c + b · c - это сумма произведений одночленов a и b на одночлен c .

Приведенные рассуждения позволяют нам сформулировать правило умножения многочлена на одночлен:

Определение 1

Для осуществления действия умножения многочлена на одночлен необходимо:

  • записать произведение многочлена и одночлена, которые необходимо перемножить;
  • умножить каждый член многочлена на заданный одночлен;
  • найти сумму полученных произведений.

Дополнительно поясним приведенный алгоритм.

Чтобы составить произведение многочлена на одночлен, исходный многочлен заключают в скобки; далее между ним и заданным одночленом ставится знак умножения. В случае, когда запись одночлена начинается со знака минус, его также необходимо заключить в скобки. К примеру, произведение многочлена − 4 · x 2 + x − 2 и одночлена 7 · y запишем как (− 4 · x 2 + x − 2) · 7 · y , а произведение многочлена a 5 · b − 6 · a · b и одночлена − 3 · a 2 составим в виде: (a 5 · b − 6 · a · b) · (− 3 · a 2) .

Следующий шаг алгоритма – перемножение каждого члена многочлена на заданный одночлен. Составляющими многочлена служат одночлены, т.е. по сути нам необходимо выполнить умножение одночлена на одночлен. Допустим, что после первого шага алгоритма мы получили выражение (2 · x 2 + x + 3) · 5 · x , тогда вторым шагом перемножаем каждый член многочлена 2 · x 2 + x + 3 с одночленом 5 · x , получая таким образом: 2 · x 2 · 5 · x = 10 · x 3 , x · 5 · x = 5 · x 2 и 3 · 5 · x = 15 · x . Результатом станут одночлены 10 · x 3 , 5 · x 2 и 15 · x .

Последнее действие согласно правилу - сложение полученных произведений. Из предложенного примера, проделав данный шаг алгоритма, получим: 10 · x 3 + 5 · x 2 + 15 · x .

Стандартно все шаги записывают как цепочку равенств. Например, нахождение произведения многочлена 2 · x 2 + x + 3 и одночлена 5 · x запишем так: (2 · x 2 + x + 3) · 5 · x = 2 · x 2 · 5 · x + x · 5 · x + 3 · 5 · x = 10 · x 3 + 5 · x 2 + 15 · x . Исключив промежуточное вычисление второго шага, краткое решение возможно оформить следующим образом: (2 · x 2 + x + 3) · 5 · x = 10 · x 3 + 5 · x 2 + 15 · x .

Рассмотренные примеры дают возможность заметить важный нюанс: в результате перемножения многочлена и одночлена получается многочлен. Данное утверждение верно для любых перемножаемых многочлена и одночлена.

По аналогии осуществляется умножение одночлена на многочлен: заданный одночлен перемножают с каждым членом многочлена и полученные произведения суммируются.

Примеры умножения многочлена на одночлен

Пример 1

Необходимо найти произведение: 1 , 4 · x 2 - 3 , 5 · y · - 2 7 · x .

Решение

Первый шаг правила уже выполнен – произведение записано. Теперь выполняем следующий шаг, умножая каждый член многочлена на заданный одночлен. В данном случае удобно сначала перевести десятичные дробив обыкновенные. Тогда получим:

1 , 4 · x 2 - 3 , 5 · y · - 2 7 · x = 1 , 4 · x 2 · - 2 7 · x - 3 , 5 · y · - 2 7 · x = = - 1 , 4 · 2 7 · x 2 · x + 3 , 5 · 2 7 · x · y = - 7 5 · 2 7 · x 3 + 7 5 · 2 7 · x · y = - 2 5 · x 3 + x · y

Ответ: 1 , 4 · x 2 - 3 , 5 · y · - 2 7 · x = - 2 5 · x 3 + x · y .

Уточним, что, когда исходные многочлен и/или одночлен заданы в нестандартном виде, перед тем, как найти их произведение, желательно привести их к стандартному виду.

Пример 2

Заданы многочлен 3 + a − 2 · a 2 + 3 · a − 2 и одночлен − 0 , 5 · a · b · (− 2) · a . Необходимо найти их произведение.

Решение

Мы видим, что исходные данные представлены в нестандартном виде, поэтому для удобства дальнейших вычислений приведем их в стандартный вид:

− 0 , 5 · a · b · (− 2) · a = (− 0 , 5) · (− 2) · (a · a) · b = 1 · a 2 · b = a 2 · b 3 + a − 2 · a 2 + 3 · a − 2 = (3 − 2) + (a + 3 · a) − 2 · a 2 = 1 + 4 · a − 2 · a 2

Теперь осуществим перемножение одночлена a 2 · b на каждый член многочлена 1 + 4 · a − 2 · a 2

a 2 · b · (1 + 4 · a − 2 · a 2) = a 2 · b · 1 + a 2 · b · 4 · a + a 2 · b · (− 2 · a 2) = = a 2 · b + 4 · a 3 · b − 2 · a 4 · b

Мы могли бы не приводить исходные данные к стандартному виду: решение при этом оказалось бы более громоздким. При этом последним шагом возникал бы необходимость приведения подобных членов. Для понимания приведем решение по этой схеме:

− 0 , 5 · a · b · (− 2) · a · (3 + a − 2 · a 2 + 3 · a − 2) = = − 0 , 5 · a · b · (− 2) · a · 3 − 0 , 5 · a · b · (− 2) · a · a − 0 , 5 · a · · b · (− 2) · a · (− 2 · a 2) − 0 , 5 · a · b · (− 2) · a · 3 · a − 0 , 5 · a · b · (− 2) · a · (− 2) = = 3 · a 2 · b + a 3 · b − 2 · a 4 · b + 3 · a 3 · b − 2 · a 2 · b = a 2 · b + 4 · a 3 · b − 2 · a 4 · b

Ответ: − 0 , 5 · a · b · (− 2) · a · (3 + a − 2 · a 2 + 3 · a − 2) = a 2 · b + 4 · a 3 · b − 2 · a 4 · b .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Если числа обозначены различными буквами, то можно лишь обозначить из произведение; пусть, напр., надо число a умножить на число b, – мы можем это обозначить или a ∙ b или ab, но не может быть и речи о том, чтобы как-нибудь выполнить это умножение. Однако, когда имеем дело с одночленами, то, благодаря 1) присутствию коэффициентов и 2) тому обстоятельству, что в состав этих одночленов могут входить множители, обозначенные одинаковыми буквами, является возможность говорить о выполнении умножения одночленов; еще шире такая возможность при многочленах. Разберем ряд случаев, где возможно выполнять умножение, начиная с простейшего.

1. Умножение степеней с одинаковыми основаниями . Пусть, напр., требуется a 3 ∙ a 5 . Напишем, зная смысл возведения в степень, то же самое подробнее:

a ∙ a ∙ a ∙ a ∙ a ∙ a ∙ a ∙ a

Рассматривая эту подробную запись, мы видим, что у нас написано a множителем 8 раз, или, короче, a 8 . Итак, a 3 ∙ a 5 = a 8 .

Пусть требуется b 42 ∙ b 28 . Пришлось бы написать сначала множитель b 42 раза, а затем опять множитель b 28 раз – в общем, получили бы, что b берется множителем 70 раз. т. е. b 70 . Итак, b 42 ∙ b 28 = b 70 . Отсюда уже ясно, что при умножении степеней с одинаковыми основаниями основание степени остается без перемены, а показатели степеней складываются. Если имеем a 8 ∙ a, то придется иметь в виду, что у множителя a подразумевается показатель степени 1 («a в первой степени»), – следовательно, a 8 ∙ a = a 9 .

Примеры: x ∙ x 3 ∙ x 5 = x 9 ; a 11 ∙ a 22 ∙ a 33 = a 66 ; 3 5 ∙ 3 6 ∙ 3 = 3 12 ; (a + b) 3 ∙ (a + b) 4 = (a + b) 7 ; (3x – 1) 4 ∙ (3x – 1) = (3x – 1) 5 и т. д.

Иногда приходится иметь дело со степенями, показатели которых обозначены буквами, напр., xn (x в степени n). С такими выражениями надо привыкнуть обращаться. Вот примеры:

Поясним некоторые из этих примеров: b n – 3 ∙ b 5 надо основание b оставить без перемены, а показатели сложить, т. е. (n – 3) + (+5) = n – 3 + 5 = n + 2. Конечно, подобные сложения должно научиться выполнять быстро в уме.

Еще пример: x n + 2 ∙ x n – 2 , – основание x надо оставить без перемены, а показатель сложить, т. е. (n + 2) + (n – 2) = n + 2 + n – 2 = 2n.

Можно выше найденный порядок, как выполнять умножение степеней с одинаковыми основаниями, выразить теперь равенством:

a m ∙ a n = a m + n

2. Умножение одночлена на одночлен. Пусть, напр., требуется 3a²b³c ∙ 4ab²d². Мы видим, что здесь обозначено точкою одно умножение, но мы знаем, что этот же знак умножения подразумевается между 3 и a², между a² и b³, между b³ и c, между 4 и a, между a и b², между b² и d². Поэтому мы можем здесь видеть произведение 8 множителей и можем перемножить их любыми группами в любом порядке. Переставим их так, чтобы коэффициенты и степени с одинаковыми основаниями оказались рядом, т. е.

3 ∙ 4 ∙ a² ∙ a ∙ b³ ∙ b² ∙ c ∙ d².

Тогда мы сможем перемножить 1) коэффициенты и 2) степени с одинаковыми основаниями и получим 12a³b5cd².

Итак, при умножении одночлена на одночлен мы можем перемножить коэффициенты и степени с одинаковыми основаниями, а остальные множители приходится переписывать без изменения.

Еще примеры:

3. Умножение многочлена на одночлен. Пусть надо сначала какой-нибудь многочлен, напр., a – b – c + d умножить на положительное целое число, напр., +3. Так как положительные числа считаются совпадающими с арифметическими, то это все равно, что (a – b – c + d) ∙ 3, т. е. a – b – c + d взять 3 раза слагаемым, или

(a – b – c + d) ∙ (+3) = a – b – c + d + a – b – c + d + a – b – c + d = 3a – 3b – 3c + 3d,

т. е. в результате пришлось каждый член многочлена умножить на 3 (или на +3).

Отсюда вытекает:

(a – b – c + d) ÷ (+3) = a – b – c + d,

т. е. пришлось каждый член многочлена разделить на (+3). Также, обобщая, получим:

и т. п.

Пусть теперь надо (a – b – c + d) умножить на положительную дробь, напр., на +. Это все равно, что умножить на арифметическую дробь , что значит взять части от (a – b – c + d). Взять одну пятую часть от этого многочлена легко: надо (a – b – c + d) разделить на 5, а это уже умеем делать, – получим . Остается повторить полученный результат 3 раза или умножить на 3, т. е.

В результате мы видим, что пришлось каждый член многочлена умножить на или на +.

Пусть теперь надо (a – b – c + d) умножить на отрицательное число, целое или дробное,

т. е. и в этом случае пришлось каждый член многочлена умножить на –.

Таким образом, какое бы ни было число m, всегда (a – b – c + d) ∙ m = am – bm – cm + dm.

Так как каждый одночлен представляет собою число, то здесь мы видим указание, как умножать многочлен на одночлен – надо каждый член многочлена умножить на этот одночлен.

4. Умножение многочлена на многочлен . Пусть надо (a + b + c) ∙ (d + e). Так как d и e означают числа, то и (d + e) выражает какое-либо одно число.

(a + b + c) ∙ (d + e) = a(d + e) + b(d + e) + c(d + e)

(мы можем объяснить это и так: мы вправе d + e временно принять за одночлен).

Ad + ae + bd + be + cd + ce

В этом результате можно изменить порядок членов.

(a + b + c) ∙ (d + e) = ad + bd + ed + ae + be + ce,

т. е. для умножения многочлена на многочлен приходится каждый член одного многочлена умножать на каждый член другого. Удобно (для этого и был выше изменен порядок полученных членов) умножить каждый член первого многочлена сперва на первый член второго (на +d), затем на второй член второго (на +e), затем, если бы он был, на третий и т. д.; после этого следует сделать приведение подобных членов.

В этих примерах двучлен умножается на двучлен; в каждом двучлене члены расположены по нисходящим степеням буквы, общей для обоих двучленов. Подобные умножения легко выполнять в уме и сразу писать окончательный результат.

От умножения старшего члена первого двучлена на старший член второго, т. е. 4x² на 3x, получим 12x³ старший член произведения – ему подобных, очевидно, не будет. Далее мы ищем, от перемножения каких членов получатся члены с меньшею на 1 степенью буквы x, т. е. с x². Легко видим, что такие члены получатся от умножения 2-го члена первого множителя на 1-й член второго и от умножения 1-го члена первого множителя на 2-ой член второго (скобки внизу примера это указывают). Выполнить эти умножения в уме и выполнить также приведение этих двух подобных членов (после чего получим член –19x²) – дело нетрудное. Затем замечаем, что следующий член, содержащий букву x в степени еще на 1 меньшей, т. е. x в 1-ой степени, получится только от умножения второго члена на второй, и ему подобных не будет.

Еще пример: (x² + 3x)(2x – 7) = 2x³ – x² – 21x.

Также в уме легко выполнять примеры, вроде следующего:

Старший член получается от умножения старшего члена на старший, ему подобных членов не будет, и он = 2a³. Затем ищем, от каких умножений получатся члены с a² – от умножения 1-го члена (a²) на 2-ой (–5) и от умножения второго члена (–3a) на 1-ый (2a) – это указано внизу скобками; выполнив эти умножения и соединив полученные члены в один, получим –11a². Затем ищем, от каких умножений получатся члены с a в первой степени – эти умножения отмечены скобками сверху. Выполнив их и соединив полученные члены в один, получим +11a. Наконец, замечаем, что младший член произведения (+10), вовсе не содержащий a, получается от перемножения младшего члена (–2) одного многочлена на младший член (–5) другого.

Еще пример: (4a 3 + 3a 2 – 2a) ∙ (3a 2 – 5a) = 12a 5 – 11a 4 – 21a 3 + 10a 2 .

Из всех предыдущих примеров мы также получим общий результат: старший член произведения получается всегда от перемножения старших членов множителей, и подобных ему членов быть не может; также младший член произведения получается от перемножения младших членов множителей, и подобных ему членов также быть не может.

Остальным членам, получаемым при умножении многочлена на многочлен, могут быть подобные, и может даже случиться, что все эти члены взаимно уничтожатся, а останутся лишь старший и младший.

Вот примеры:

(a² + ab + b²) (a – b) = a³ + a²b + ab² – a²b – ab² – b³ = a³ – b³
(a² – ab + b²) (a – b) = a³ – a²b + ab² + a²b – ab² + b³ = a³ + b³
(a³ + a²b + ab² + b³) (a – b) = a 4 – b 4 (пишем только результат)
(x 4 – x³ + x² – x + 1) (x + 1) = x 5 + 1 и т. п.

Эти результаты достойны внимания и их полезно запомнить.

Особенно важен следующий случай умножения:

(a + b) (a – b) = a² + ab – ab – b² = a² – b²
или (x + y) (x – y) = x² + xy – xy – y² = x² – y²
или (x + 3) (x – 3) = x² + 3x – 3x – 9 = x² – 9 и т. п.

Во всех этих примерах, применяясь к арифметике, мы имеем произведение суммы двух чисел на их разность, а в результате получается разность квадратов этих чисел.

Если мы увидим подобный случай, то уже нет нужды выполнять умножение подробно, как это делалось выше, а можно сразу написать результат.

Напр., (3a + 1) ∙ (3a – 1). Здесь первый множитель, с точки зрения арифметики, есть сумма двух чисел: первое число есть 3a и второе 1, а второй множитель есть разность тех же чисел; потому в результате должно получиться: квадрат первого числа (т. е. 3a ∙ 3a = 9a²) минус квадрат второго числа (1 ∙ 1 = 1), т. е.

(3a + 1) ∙ (3a – 1) = 9a² – 1.

Также

(ab – 5) ∙ (ab + 5) = a²b² – 25 и т. п.

Итак, запомним

(a + b) (a – b) = a² – b²

т. е. произведение суммы из двух чисел на их разность равно разности квадратов этих чисел.